• Laser & Optoelectronics Progress
  • Vol. 58, Issue 19, 1900006 (2021)
Wanbiao Hu*, Wan Zhang, and Chengding Gu
Author Affiliations
  • Key Laboratory of LCR Materials and Devices of Yunnan Province, School of Materials and Energy, Yunnan University, Kunming , Yunnan 650500, China
  • show less
    DOI: 10.3788/LOP202158.1900006 Cite this Article Set citation alerts
    Wanbiao Hu, Wan Zhang, Chengding Gu. Review of Molybdenum Disulfide Photodetectors[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900006 Copy Citation Text show less
    References

    [1] Yang W, Chen J X, Zhang Y et al. Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology[J]. Advanced Functional Materials, 29, 1808182(2019).

    [2] Wangyang P H, Gong C H, Rao G F et al. Recent advances in halide perovskite photodetectors based on different dimensional materials[J]. Advanced Optical Materials, 6, 1701302(2018).

    [3] Lin C H, Cheng B, Li T Y et al. Orthogonal lithography for halide perovskite optoelectronic nanodevices[J]. ACS Nano, 13, 1168-1176(2019).

    [4] Alamri A M, Leung S, Vaseem M et al. Fully inkjet-printed photodetector using a graphene/perovskite/graphene heterostructure[J]. IEEE Transactions on Electron Devices, 66, 2657-2661(2019).

    [5] Wang F, Wang Z X, Yin L et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection[J]. Chemical Society Reviews, 47, 6296-6341(2018).

    [6] Wang J, Luo L B. Advances in Ga2O3-based solar-blind ultraviolet photodetectors[J]. Chinese Journal of Lasers, 48, 1100001(2021).

    [7] Duan Y H, Cong M Y, Jiang D Y et al. Spectral response cutoff wavelength of ZnO ultraviolet photodetector modulated by bias voltage[J]. Acta Optica Sinica, 40, 2004001(2020).

    [8] Ouyang W, Teng F, He J H et al. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering[J]. Advanced Functional Materials, 29, 1807672(2019).

    [9] Chen H Y, Lu Y, Li C et al. Multilayer PtSe2/TiO2 NRs schottky junction for UV photodetector[J]. Acta Optica Sinica, 40, 2025001(2020).

    [10] Han N, Ji T, Cui Y X et al. Research progress of two-dimensional layered perovskite materials and their applications[J]. Laser & Optoelectronics Progress, 56, 070002(2019).

    [11] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [12] Zhang Y Z, Liu T, Meng B et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 4, 1811(2013).

    [13] Urich A, Unterrainer K, Mueller T. Intrinsic response time of graphene photodetectors[J]. Nano Letters, 11, 2804-2808(2011).

    [14] Xia F N, Mueller T, Lin Y M et al. Ultrafast graphene photodetector[C], CMV1(2010).

    [15] Choi W, Cho M Y, Konar A et al. Phototransistors: high-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared[J]. Advanced Materials, 24, 5832-5836(2012).

    [16] Lee H S, Min S W, Chang Y G et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Letters, 12, 3695-3700(2012).

    [17] Lin Z Y, Liu Y, Halim U et al. Solution-processable 2D semiconductors for high-performance large-area electronics[J]. Nature, 562, 254-258(2018).

    [18] Castellanos-Gomez A, Buscema M, Molenaar R et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping[J]. 2D Materials, 1, 011002(2014).

    [19] Xie Y, Wang Z, Zhan Y J et al. Controllable growth of monolayer MoS2 by chemical vapor deposition via close MoO2 precursor for electrical and optical applications[J]. Nanotechnology, 28, 084001(2017).

    [20] Liu Y, Gong T X, Zheng Y N et al. Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry[J]. Nanoscale, 10, 20013-20019(2018).

    [21] Han P Z, St Marie L, Wang Q X et al. Highly sensitive MoS2 photodetectors with graphene contacts[J]. Nanotechnology, 29, 20LT01(2018).

    [22] Wang X D, Wang P, Wang J L et al. Ultrasensitive and broadband MoS₂ photodetector driven by ferroelectrics[J]. Advanced Materials, 27, 6575-6581(2015).

    [23] Haugan H J, Elhamri S, Szmulowicz F et al. Study of residual background carriers in midinfrared InAs/GaSb superlattices for uncooled detector operation[J]. Applied Physics Letters, 92, 071102(2008).

    [24] Donati S. Photodetectors: devices, circuits and applications[J]. Measurement Science and Technology, 12, 653(2001).

    [25] Stöckmann F. Photodetectors, their performance and their limitations[J]. Applied Physics, 7, 1-5(1975).

    [26] Yotter R A, Wilson D M. A review of photodetectors for sensing light-emitting reporters in biological systems[J]. IEEE Sensors Journal, 3, 288-303(2003).

    [27] Bishop P, Gibson A, Kimmitt M. The performance of photon-drag detectors at high laser intensities[J]. IEEE Journal of Quantum Electronics, 9, 1007-1011(1973).

    [28] Grinberg A A, Luryi S. Theory of the photon-drag effect in a two-dimensional electron gas[J]. Physical Review B, 38, 87(1988).

    [29] Neamen D A[M]. Semiconductor physics and devices(2017).

    [30] Hu Y, Marks B S, Menyuk C R et al. Modeling sources of nonlinearity in a simple p-i-n photodetector[J]. Journal of Lightwave Technology, 32, 3710-3720(2014).

    [31] Lopez-Sanchez O, Lembke D, Kayci M et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 8, 497-501(2013).

    [32] Zhang W, Huang J K, Chen C H et al. High-gain phototransistors based on a CVD MoS₂ monolayer[J]. Advanced Materials, 25, 3456-3461(2013).

    [33] Yu H, Liao M Z, Zhao W J et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films[J]. ACS Nano, 11, 12001-12007(2017).

    [34] Hong X, Kim J, Shi S F et al. Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures[J]. Nature Nanotechnology, 9, 682-686(2014).

    [35] Bhanu U, Islam M R, Tetard L et al. Photoluminescence quenching in gold-MoS2 hybrid nanoflakes[J]. Scientific Reports, 4, 5575(2014).

    [36] Liu F C, Chow W L, He X X et al. Van der Waals p-n junction based on an organic-inorganic heterostructure[J]. Advanced Functional Materials, 25, 5865-5871(2015).

    [37] Huang Y, Zhuge F W, Hou J X et al. Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity[J]. ACS Nano, 12, 4062-4073(2018).

    [38] Ying H T, Li X, Wang H M et al. Band structure engineering in MoS2 based heterostructures toward high-performance phototransistors[J]. Advanced Optical Materials, 8, 2000430(2020).

    [39] Tu L Q, Cao R R, Wang X D et al. Ultrasensitive negative capacitance phototransistors[J]. Nature Communications, 11, 101(2020).

    [40] Bang S, Duong N T, Lee J et al. Augmented quantum yield of a 2D monolayer photodetector by surface plasmon coupling[J]. Nano Letters, 18, 2316-2323(2018).

    [41] Min B K, Nguyen V T, Kim S J et al. Surface plasmon resonance-enhanced near-infrared absorption in single-layer MoS2 with vertically aligned nanoflakes[J]. ACS Applied Materials & Interfaces, 12, 14476-14483(2020).

    [42] Arp T B, Pleskot D, Aji V et al. Electron-hole liquid in a van der Waals heterostructure photocell at room temperature[J]. Nature Photonics, 13, 245-250(2019).

    [43] Jauregui L A, Joe A Y, Pistunova K et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures[J]. Science, 366, 870-875(2019).

    [44] Zeng Q S, Liu Z. Novel optoelectronic devices: transition-metal-dichalcogenide-based 2D heterostructures[J]. Advanced Electronic Materials, 4, 1700335(2018).

    [45] Terrones H, López-Urías F, Terrones M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides[J]. Scientific Reports, 3, 1549(2013).

    [46] Komsa H P, Krasheninnikov A V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles[J]. Physical Review B, 88, 085318(2013).

    [47] Kośmider K, Fernández-Rossier J. Electronic properties of the MoS2-WS2 heterojunction[J]. Physical Review B, 87, 075451(2013).

    [48] Kang J, Tongay S, Zhou J et al. Band offsets and heterostructures of two-dimensional semiconductors[J]. Applied Physics Letters, 102, 012111(2013).

    [49] Gong C, Zhang H J, Wang W H et al. Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors[J]. Applied Physics Letters, 103, 053513(2013).

    [50] Ross J S, Rivera P, Schaibley J et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction[J]. Nano Letters, 17, 638-643(2017).

    [51] Kim S G, Kim S H, Park J et al. Infrared detectable MoS2 phototransistor and its application to artificial multilevel optic-neural synapse[J]. ACS Nano, 13, 10294-10300(2019).

    [52] Kim M S, Seo C, Kim H et al. Simultaneous hosting of positive and negative trions and the enhanced direct band emission in MoSe2/MoS2 heterostacked multilayers[J]. ACS Nano, 10, 6211-6219(2016).

    [53] Latini S, Winther K T, Olsen T et al. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures[J]. Nano Letters, 17, 938-945(2017).

    [54] Teitz L, Toroker M C. Theoretical investigation of dielectric materials for two-dimensional field-effect transistors[J]. Advanced Functional Materials, 30, 1808544(2020).

    [55] Williams K R, Diroll B T, Watkins N E et al. Synthesis of type I PbSe/CdSe dot-on-plate heterostructures with near-infrared emission[J]. Journal of the American Chemical Society, 141, 5092-5096(2019).

    [56] Li Q Y, Wu K F, Chen J Q et al. Size-independent exciton localization efficiency in colloidal CdSe/CdS core/crown nanosheet type-I heterostructures[J]. ACS Nano, 10, 3843-3851(2016).

    [57] Gao R, Liu H R, Yang J E et al. 2D anisotropic type-I SiS vdW heterostructures toward infrared polarized optoelectronics applications[J]. Applied Surface Science, 529, 147026(2020).

    [58] Liao C S, Yu Z L, He P B et al. Effects of composition modulation on the type of band alignments for Pd2Se3/CsSnBr3 van der Waals heterostructure: a transition from type I to type II[J]. Journal of Power Sources, 478, 229078(2020).

    [59] Liu Y, Guo J, Zhu E et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions[J]. Nature, 557, 696-700(2018).

    [60] Jariwala D, Howell S L, Chen K S et al. Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2[J]. Nano Letters, 16, 497-503(2016).

    [61] Jariwala D, Sangwan V K, Seo J W T et al. Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors[J]. Nano Letters, 15, 416-421(2015).

    [62] Jariwala D, Sangwan V K, Wu C C et al. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 18076-18080(2013).

    [63] Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p-n diode[J]. Nature Nanotechnology, 9, 257-261(2014).

    [64] Buscema M, Groenendijk D J, Steele G A et al. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating[J]. Nature Communications, 5, 4651(2014).

    [65] Groenendijk D J, Buscema M, Steele G A et al. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device[J]. Nano Letters, 14, 5846-5852(2014).

    [66] Baugher B W H, Churchill H O H, Yang Y F et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 9, 262-267(2014).

    [67] Ross J S, Klement P, Jones A M et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions[J]. Nature Nanotechnology, 9, 268-272(2014).

    [68] Chen J W, Lo S T, Ho S C et al. A gate-free monolayer WSe2 pn diode[J]. Nature Communications, 9, 3143(2018).

    [69] Wu G J, Wang X D, Chen Y et al. MoTe2 p-n homojunctions defined by ferroelectric polarization[J]. Advanced Materials, 32, e1907937(2020).

    [70] Liu Y, Huang W, Gong T X et al. Ultra-sensitive near-infrared graphene photodetectors with nanopillar antennas[J]. Nanoscale, 9, 17459-17464(2017).

    [71] Guo J X, Li S D, He Z B et al. Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance[J]. Applied Surface Science, 483, 1037-1043(2019).

    [72] Butun S, Tongay S, Aydin K. Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays[J]. Nano Letters, 15, 2700-2704(2015).

    [73] Liu Y, Cheng R, Liao L et al. Plasmon resonance enhanced multicolour photodetection by graphene[J]. Nature Communications, 2, 579(2011).

    [74] Najmaei S, Mlayah A, Arbouet A et al. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures[J]. ACS Nano, 8, 12682-12689(2014).

    [75] Park M J, Park K, Ko H. Near-infrared photodetector achieved by chemically-exfoliated multilayered MoS2 flakes[J]. Applied Surface Science, 448, 64-70(2018).

    Wanbiao Hu, Wan Zhang, Chengding Gu. Review of Molybdenum Disulfide Photodetectors[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900006
    Download Citation