• Laser & Optoelectronics Progress
  • Vol. 58, Issue 19, 1900006 (2021)
Wanbiao Hu*, Wan Zhang, and Chengding Gu
Author Affiliations
  • Key Laboratory of LCR Materials and Devices of Yunnan Province, School of Materials and Energy, Yunnan University, Kunming , Yunnan 650500, China
  • show less
    DOI: 10.3788/LOP202158.1900006 Cite this Article Set citation alerts
    Wanbiao Hu, Wan Zhang, Chengding Gu. Review of Molybdenum Disulfide Photodetectors[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900006 Copy Citation Text show less
    Schematic diagram of photodetector
    Fig. 1. Schematic diagram of photodetector
    Schematic diagrams of the monolayer MoS2 photodetector with and without adsorbates. (a) Without adsorbates[31]; (b) with adsorbates[32]
    Fig. 2. Schematic diagrams of the monolayer MoS2 photodetector with and without adsorbates. (a) Without adsorbates[31]; (b) with adsorbates[32]
    Illustrations of different types of heterostructures. (a) MoS2/WS2 heterostructure forming type Ⅱ heterojunction[34]; (b) MoS2/MoSe2 heterostructure forming type II heterojunction[52]; (c) MoS2/ZnPc heterostructure forming type Ⅱ heterojunction[37]; (d) BaTiO3/MoS2 heterostructure forming type Ⅰ heterojunction[38]
    Fig. 3. Illustrations of different types of heterostructures. (a) MoS2/WS2 heterostructure forming type Ⅱ heterojunction[34]; (b) MoS2/MoSe2 heterostructure forming type II heterojunction[52]; (c) MoS2/ZnPc heterostructure forming type Ⅱ heterojunction[37]; (d) BaTiO3/MoS2 heterostructure forming type Ⅰ heterojunction[38]
    MoS2 photodetector controlled by ferroelectric polarization: equilibrium energy band diagrams of three different ferroelectric polarization states[22]
    Fig. 4. MoS2 photodetector controlled by ferroelectric polarization: equilibrium energy band diagrams of three different ferroelectric polarization states[22]
    Schematic diagram of the MoS2/Hf0.5Zr0.5O2 photodetector[39]
    Fig. 5. Schematic diagram of the MoS2/Hf0.5Zr0.5O2 photodetector[39]
    Research of MoS2 photodetector with plasmon resonance. (a)‒(d) Finite-difference time-domain simulation of plasmon resonance enhancement of local optical field[73]; (e)‒(h) schematic reporesentation of plasmonic/MoS2 heterostructures [20, 40-41, 72]
    Fig. 6. Research of MoS2 photodetector with plasmon resonance. (a)‒(d) Finite-difference time-domain simulation of plasmon resonance enhancement of local optical field[73]; (e)‒(h) schematic reporesentation of plasmonic/MoS2 heterostructures [20, 40-41, 72]
    Optimization typeDevice architecturePerformanceYearsRef.
    Band engineeringMoS2/WS2τrise=50 fs201434
    MoS2-rubreneR=0.5 A/W at 532 nm201536
    MoS2/ZnPc

    τrise/τfall=72 ms /8 ms,

    R=430 A/W at 532 nm

    201837
    BaTiO3/MoS2R=120 A/W,η=4.78×104 %202038

    Ferroelectrics

    polarization

    MoS2/P(VDF-TrFE)

    R=2570 A/W,

    D*=2.2×1012 cm·Hz1/2·W-1 at 635 nm

    201522
    MoS2/Hf0.5Zr0.5O2

    R=96.8 A/W,

    D*=4.75×1014 cm·Hz1/2·W-1 at 637 nm

    202039
    Plasmon resonanceAg nanowire/MoS2

    R=59.60 A/W,

    D*= 4.51 × 1010 cm·Hz1/2·W-1 at 532 nm

    201840
    Graphene ribbon/MoS2R=1 × 107 A/W at 6‒16 μm201820
    Vertically aligned MoS2/MoS21000‒1750 nm202041
    Table 1. Performance of some representative MoS2-based photodetector
    Wanbiao Hu, Wan Zhang, Chengding Gu. Review of Molybdenum Disulfide Photodetectors[J]. Laser & Optoelectronics Progress, 2021, 58(19): 1900006
    Download Citation