• Journal of Inorganic Materials
  • Vol. 38, Issue 8, 910 (2023)
Jian LIU1,2, Lingkun WANG1,2, Baoliang XU1,2, Qian ZHAO1,2..., Yaoxuan WANG1,2, Yi DING1,2, Shengtai ZHANG1,2,3,* and Tao DUAN1,2,*|Show fewer author(s)
Author Affiliations
  • 11. National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
  • 22. State Key Laboratory of Environment-friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
  • 33. Innovation Research Team for Advanced Ceramics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
  • show less
    DOI: 10.15541/jim20220775 Cite this Article
    Jian LIU, Lingkun WANG, Baoliang XU, Qian ZHAO, Yaoxuan WANG, Yi DING, Shengtai ZHANG, Tao DUAN. Nd-doped ZrSiO4 Ceramics: Synthesis in Molten Salt at Low Temperature, Phase Evolution and Chemical Stability [J]. Journal of Inorganic Materials, 2023, 38(8): 910 Copy Citation Text show less
    References

    [1] F V HIPPEL, R EWING, R GARWIN et al. Nuclear proliferation: time to bury plutonium. Nature, 167(2012).

    [2] R C EWING. Nuclear waste forms for actinides. National Academy of Sciences, 3432(1999).

    [3] S Y LI, X Y YANG, J LIU et al. First-principles calculations and experiments for Ce4+ effects on structure and chemical stabilities of Zr1-xCexSiO4. Journal of Nuclear Materials, 276(2019).

    [4] S Y Li, J LiU, X Y YANG et al. Effect of phase evolution and acidity on the chemical stability of Zr1-xNdxSiO4-x/2 ceramics. Ceramics International, 3052(2019).

    [5] A E RINGWOOD, S E KESSON, N G WARE et al. Immobilisation of high level nuclear reactor wastes in SYNROC. Nature, 219(1979).

    [6] S T ZHANG, L K WANG, B L XU et al. Rapid synthesis of Nd-doped Y3Fe5O12 garnet waste forms by microwave sintering. Ceramics International, 21924(2021).

    [7] R C EWING, W LUTZE, W J WEBER. Zircon: a host-phase for the disposal of weapons plutonium. International Journal of Materials Research, 243(1995).

    [8] X R LU, X Y SHU, D SHAO et al. Radiation stability of Gd2Zr2O7 and Nd2Ce2O7 ceramics as nuclear waste forms. Ceramics International, 760(2017).

    [9] H YANG, Y TENG, X REN et al. Synthesis and crystalline phase of monazite-type Ce1-xGdxPO4 solid solutions for immobilization of minor actinide curium. Journal of Nuclear Materials, 444, 39(2014).

    [10] G D HANNAH, J Z LISA, M MAURICIO et al. Zirconium stable isotope analysis of zircon by MC-ICP-MS: methods and application to evaluating intra-crystalline zonation in a zircon megacryst. Journal of Analytical Atomic Spectrometry, 1167(2020).

    [11] X WANG, Z L XUE, Z M ZHOU et al. Influences of ZrSiO4 doping on microstructure and mechanical properties of Y2SiO5- ZrSiO4 ceramics. Ceramics International, 1277(2021).

    [12] Y W XIONG, J J LI, D D ZHAO et al. High capacity synergistic immobilization of simulated trivalent actinides by zirconia/zircon multiphase ceramics. Ceramics International, 2472(2023).

    [13] X Y YANG, S Y LI, Y YI et al. Rapid preparation of zirconia/ zircon composites ceramics by microwave method: experiment and first-principle investigation. Progress in Nuclear Energy(2021).

    [14] Z D JIANG, T H XIONG, Z M BAI et al. Effect of Si/Zr molar ratio on the sintering and crystallization behavior of zircon ceramics. Journal of the European Ceramic Society, 4605(2020).

    [15] Y DING, Z D JIANG, T H XIONG et al. Phase and microstructure evolution of 0.2Zr1-xCexO2/Zr1-yCeySiO4 (0≤x+y≤1) ceramics designed to immobilize tetravalent actinides. Journal of Nuclear Materials(2020).

    [16] J M MARTINEZ, M BIESUZ, J DONG et al. Flash sintering of zircon: rapid consolidation of an ultrahigh bandgap ceramic. Journal of the American Ceramic Society, 374(2021).

    [17] R V GENTRY, T J SWORSKI, H S MCKOWN et al. Differential lead retention in zircons: implications for nuclear waste containment. Science, 296(1982).

    [18] W J WEBER. Self-radiation damage and recovery in Pu-doped zircon. Radiation Effects and Defects in Solids, 341(1991).

    [19] Y DING, X R LU, H DAN et al. Phase evolution and chemical durability of Nd-doped zircon ceramics designed to immobilize trivalent actinides. Ceramics International, 10044(2015).

    [20] Y DING, X R LU, H TU et al. Phase evolution and microstructure studies on Nd3+ and Ce4+co-doped zircon ceramics. Journal of the European Ceramic Society, 2153(2015).

    [21] Y DING, Z D JIANG, Y J LI et al. Low temperature and rapid preparation of zirconia/zircon (ZrO2/ZrSiO4) composite ceramics by a hydrothermal-assisted Sol-Gel process. Journal of Alloys and Compounds, 2190(2018).

    [22] X L HU, K CHEN et al. Microwave sintering: new technology for ceramic sintering. China Ceramics(1995).

    [23] J S LI, J Y FAN, Y YUAN et al. Effect of oscillatory pressure on the sintering behavior of ZrO2 ceramic. Ceramics International, 13240(2020).

    [24] Y DING, Y J LI, Z D JIANG et al. Phase Evolution and chemical stability of the Nd2O3-ZrO2-SiO2 system synthesized by a novel hydrothermal-assisted Sol-Gel process. Journal of Nuclear Materials, 10(2018).

    [25] H L LI, J X DENG, J J CHEN et al. Topochemical molten salt synthesis for functional perovskite compounds. Chemical Science, 855(2016).

    [26] Z C GEORGE, J F DEREK. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 361(2000).

    [27] Z HUANG, F L LI, C P JIAO et al. Molten salt synthesis of La2Zr2O7 ultrafine powders. Ceramics International, 42(2016).

    [28] A DASH, R VASSEN, O GUILLON et al. Molten salt shielded synthesis of oxidation prone materials in air. Nature Materials, 18(2019).

    [29] Y Li, H SHAO, Z LIN et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature materials, 894(2020).

    [30] A C TAŞ. Molten salt synthesis of calcium hydroxyapatite whiskers. Journal of the American Ceramic Society, 295(2010).

    [31] M A EINARSRUD, T GRANDE. 1D oxide nanostructures from chemical solutions. Chemical Society Reviews, 2187(2014).

    [32] GROOT G J DE, DER SLOOT H A VAN. Determination of leaching characteristics of waste materials leading to environmental product certification. ASTM Special Technical Publication, 149(1992).

    [33] GILBERT, R MATTHEW. Molten salt synthesis of titanate pyrochlore waste-forms. Ceramics International, 5263(2016).

    [34] Y DING, X R LU, H DAN et al. Phase evolution and chemical durability of Nd-doped zircon ceramics designed to immobilize trivalent actinides. Ceramics International, 10044(2015).

    [35] Y DING, Z D JIANG, Y J LI et al. Effect of alpha-particles irradiation on the phase evolution and chemical stability of Nd- doped zircon ceramics. Journal of Alloys and Compounds, 483(2017).

    [36] Q XUE, P WANG, J S LI et al. Investigation of the leaching behavior of lead in stabilized/solidified waste using a two-year semi-dynamic leaching test. Chemosphere, 1(2017).

    [37] L ALEKSEEVA, A NOKHRIN, M BOLDIN et al. Study of the hydrolytic stability of fine-grained ceramics based on Y2.5Nd0.5Al5O12 oxide with a garnet structure under hydrothermal conditions. Materials, 2125(2021).

    Jian LIU, Lingkun WANG, Baoliang XU, Qian ZHAO, Yaoxuan WANG, Yi DING, Shengtai ZHANG, Tao DUAN. Nd-doped ZrSiO4 Ceramics: Synthesis in Molten Salt at Low Temperature, Phase Evolution and Chemical Stability [J]. Journal of Inorganic Materials, 2023, 38(8): 910
    Download Citation