• Infrared and Laser Engineering
  • Vol. 49, Issue 8, 20190501 (2020)
Lu Li1, Chenbo Xie2, Peng Zhuang2, Kunming Xing2, Zhiyuan Fang2, Yufei Chu2, Jiadi Shao2, and Bangxin Wang2、*
Author Affiliations
  • 1Key Laboratory of Atmospheric Optics, Anhui institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
  • 2Key Laboratory of Atmospheric Optics, Anhui institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
  • show less
    DOI: 10.3788/IRLA20190501 Cite this Article
    Lu Li, Chenbo Xie, Peng Zhuang, Kunming Xing, Zhiyuan Fang, Yufei Chu, Jiadi Shao, Bangxin Wang. Opto-mechanical system structure and research progress of space-borne lidar for cloud-aerosol[J]. Infrared and Laser Engineering, 2020, 49(8): 20190501 Copy Citation Text show less
    Schematic of LITE
    Fig. 1. Schematic of LITE
    LITE instrument on orbit
    Fig. 2. LITE instrument on orbit
    LITE system functional diagram
    Fig. 3. LITE system functional diagram
    CALIOP Optomechanical system
    Fig. 4. CALIOP Optomechanical system
    Functional block diagram of CALIOP
    Fig. 5. Functional block diagram of CALIOP
    CALIOP payload
    Fig. 6. CALIOP payload
    CATS instrument on oribit
    Fig. 7. CATS instrument on oribit
    CATS – ISS payload
    Fig. 8. CATS – ISS payload
    Work table for laser1 emitted 532 and 1 064 nm
    Fig. 9. Work table for laser1 emitted 532 and 1 064 nm
    Solid model of LOM 2 and its THG on a platform
    Fig. 10. Solid model of LOM 2 and its THG on a platform
    Telescope
    Fig. 11. Telescope
    Detector standard boxes for Mode 1 (LFOV and RFOV) and Mode 3
    Fig. 12. Detector standard boxes for Mode 1 (LFOV and RFOV) and Mode 3
    Satellite and instruments observation geometry
    Fig. 13. Satellite and instruments observation geometry
    ATLID sampling and measurement principle
    Fig. 14. ATLID sampling and measurement principle
    ATLID opto-mechanical system
    Fig. 15. ATLID opto-mechanical system
    Instrument functional architecture
    Fig. 16. Instrument functional architecture
    Beam steering mechanism
    Fig. 17. Beam steering mechanism
    Power laser head mechanical structure
    Fig. 18. Power laser head mechanical structure
    Beam expander
    Fig. 19. Beam expander
    Telescope and primary mirror structure
    Fig. 20. Telescope and primary mirror structure
    Aft optical path system
    Fig. 21. Aft optical path system
    High spectral resolution filtering optical principle
    Fig. 22. High spectral resolution filtering optical principle
    Incoming filter
    Fig. 23. Incoming filter
    Cutoff filter
    Fig. 24. Cutoff filter
    Fibre coupler
    Fig. 25. Fibre coupler
    Co-alignment sensor STM
    Fig. 26. Co-alignment sensor STM
    High spectral resolution etalon
    Fig. 27. High spectral resolution etalon
    Principle of Cassegrain telescope
    Fig. 28. Principle of Cassegrain telescope
    Detection principle of hyperspectral resolution lidar
    Fig. 29. Detection principle of hyperspectral resolution lidar
    TroposphereStratosphereCloudEarth’s surface
    Relationship between aerosol scattering ratio and wavelength height and structure of PBL Optical thickness of PBLRelationship between aerosol scattering ratio and wavelength atmospheric density and temperature within 40 kmVertical distribution, cloud cover reflectivity, optical thicknessReflectivity relation between backscatter and incident angle
    Table 1.

    Detection mission of the LITE

    LITE探测任务

    ItemValue
    Output wavelenth/nm1 064532355
    Laser A output energy/mJ470530170
    Laser A beam divergence/mrad1.81.10.9
    Laser B output energy/mJ440560160
    Laser B beam divergence/mrad1.81.21.1
    Pulse repetition rate/Hz10
    Pulse width/ns27
    Table 2.

    Laser performance parameters

    激光器性能参数

    ItemValue
    Aft opticsWavelength/nm1 064532355
    Quantum efficiency331421
    Color filter bandwidth/nm67526560
    Interference filter bandwidth/nm0.80.351
    Interference gilter transmission46%45%33%
    Optical throughput (night)64%45%42%
    Optical throughput (day)29%20%14%
    Field of view (all wavelengths) Selectable:1.1 mrad, 3.5 mrad, annular, blocked
    TelescopePrimary mirror diameter/in37.25
    Secondary mirror diameter/in12.25
    Focal length189.0
    Focal ratioF/5.1
    Obscuration ratio0.11
    Table 3.

    Receiving system parameters

    接收系统参数

    ItemValue
    LaserDiode-pumped Nd:YAG
    Pulse energy110 mJ:1 064 nm
    110 mJ:532 nm
    Pep rate20.16 Hz
    Pulse length20 ns
    Line width30 pm
    Polarization purity>1 000∶1 (532 nm)
    Beam divergence (after beam expander)
    Boresight range±1°,1.6 μrad steps
    Laser environment18 psia, dry air
    Table 4.

    CALIOP transmitter system parameters

    CALIOP发射系统参数

    ItemValue
    Telescope diameter1 m
    Field of view/mrad130(full angle)
    Digitizer sample rate/MHz10
    Vertical sample spacing/m15
    Electronic bandwidth/MHz2.0
    Vertical resolution as determined by bandwidth/m30
    Digitizer resolution/bits14
    Maximum dynamic range(merged)2.5 E6(>21 bits)
    532 nm channel
    DetectorPMT
    Etalon passband/pm37
    Etalon peak transmission85%
    Blocking filter/pm770
    1 064 nm channel
    DetectorAPD
    Optical passband/pm450
    Peak transmission84%
    Table 5.

    CALIOP receiving system parameters

    CALIOP接收系统参数

    Science mode 1 Backsctter:532,1 064 nm No HSRL Depolarization: 532,1 064 nm Science mode 2 Backsctter:532,1 064 nm HSRL:532 nm Depolarization: 1 064 nm Science mode 3 Backsctter:355,532,1 064 nm No HSRL Depolarization: 532,1 064 nm Science modes 4,5,6 Backup mode Use laser 2 and receiver from mode 1
    Table 6.

    CATS main science modes

    CATS主要科学模式

    ItemParameters
    Laser1Nd:YVO4
    Repetition rate5 000 Hz
    Output divergence532 nm:0.75 mrad to 1.125 mrad
    1 064 nm: 0.75 mrad to 1.8 mrad
    Output beam diameter532 nm:<1 300
    1 064 nm:<1 300
    Output beam energy2 mJ: 532 nm
    2 mJ: 1 064 nm
    Wavelength532.12 nm
    1 064.25 nm
    Line width532 nm:45 pm
    1 064 nm:100 nm
    Pulse width532 nm:<10 ns
    1 064 nm:<10 ns
    M2532 nm:1.1-1.2
    1 064 nm:1.2-13
    Polarization532 nm:>100:1
    532 nm: >100:1
    Table 7.

    Performance parameters of laser 1

    激光器1性能参数

    Laser2Injection-seeded, pulsed Nd: YVO4
    2 wavelengths3 wavelengths
    Repetition rate4000 Hz
    Output divergence355 nmN/A0.7 mrad to 1.875 mrad
    532 nm0.75 mrad to 1.125 mrad1.275 mrad to 1.875 mrad
    1 064 nm0.75 mrad to 1.8 mrad1.275 mrad to 3 mrad
    Output beam diameter355 nmN/A<1300
    532 nm<1300
    1 064 nm
    Output beam energy355 nmN/A2 mJ
    532 nm2 mJ
    1 064 nm
    Wavelength355 nmN/A354.75
    532 nm532.12 nm532.12 nm
    1 064 nm1064.25 nm1064.25 nm
    Line width355 nmN/A0.08 pm
    532 nm<0.5 pm0.145 pm
    1 064 nm0.5 pm
    Pulse width355 nmN/A<10 ns
    532 nm<10 ns
    1 064 nm
    M2355 nmN/A1.08
    532 nm1.251.5
    1 064 nm1.393.1
    Polarization355 nmN/A>100∶1
    532 nm>100∶1
    1 064 nm
    Table 8.

    Performance parameters of laser 2

    激光器2性能参数

    Lu Li, Chenbo Xie, Peng Zhuang, Kunming Xing, Zhiyuan Fang, Yufei Chu, Jiadi Shao, Bangxin Wang. Opto-mechanical system structure and research progress of space-borne lidar for cloud-aerosol[J]. Infrared and Laser Engineering, 2020, 49(8): 20190501
    Download Citation