• Advanced Photonics
  • Vol. 2, Issue 6, 066004 (2020)
Beibei Xu1、2、†, Hanmeng Li1、2、†, Shenglun Gao1、2, Xia Hua3, Cheng Yang3, Chen Chen1、2, Feng Yan3, Shining Zhu1、2, and Tao Li1、2、*
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing, China
  • 2Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • 3Nanjing University, School of Electronic Science and Engineering, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.2.6.066004 Cite this Article Set citation alerts
    Beibei Xu, Hanmeng Li, Shenglun Gao, Xia Hua, Cheng Yang, Chen Chen, Feng Yan, Shining Zhu, Tao Li. Metalens-integrated compact imaging devices for wide-field microscopy[J]. Advanced Photonics, 2020, 2(6): 066004 Copy Citation Text show less
    References

    [1] A. Ozcan, E. McLeod. Lensless imaging and sensing. Annu. Rev. Biomed. Eng., 18, 77-102(2016).

    [2] N. Antipa et al. Diffusercam: lensless single-exposure 3D imaging. Optica, 5, 1-9(2018).

    [3] J. Zhang et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy. Sci. Rep., 7, 11777(2017).

    [4] A. Berdeu et al. Comparative study of fully three-dimensional reconstruction algorithms for lens-free microscopy. Appl. Opt., 56, 3939-3951(2017).

    [5] G. Satat, M. Tancik, R. Raskar. Lensless imaging with compressive ultrafast sensing. IEEE Trans. Comput. Imaging, 3, 398-407(2017).

    [6] T. Nakamura et al. Super field-of-view lensless camera by coded image sensors. Sensors, 19, 1329(2019).

    [7] T. Aidukas et al. Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware. Sci. Rep., 9, 7457(2019).

    [8] S. Jiang et al. Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation. Lab Chip, 20, 1058-1065(2020).

    [9] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [10] D. Lin et al. Dielectric gradient metasurface optical elements. Science, 345, 298-302(2014).

    [11] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [12] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [13] M. Faraji-Dana et al. Compact folded metasurface spectrometer. Nat. Commun., 9, 4196(2018).

    [14] E. Nazemosadat et al. Dielectric broadband metasurfaces for fiber mode-multiplexed communications. Adv. Opt. Mater., 7, 1801679(2019).

    [15] F. Yesilkoy et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics, 13, 390-396(2019).

    [16] F. Balli et al. A hybrid achromatic metalens. Nat. Commun., 11, 3892(2020).

    [17] S. Byrnes et al. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light. Opt. Express, 24, 5110-5124(2018).

    [18] T. Phan et al. High-efficiency, large-area, topology-optimized metasurfaces. Light Sci. Appl., 8, 48(2019).

    [19] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [20] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [21] S. Shrestha et al. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 85(2018).

    [22] B. Groever, W. T. Chen, F. Capasso. Meta-lens doublet in the visible region. Nano Lett., 17, 4902-4907(2017).

    [23] Y. Guo et al. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater., 6, 1800592(2018).

    [24] J. P. B. Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [25] N. A. Rubin et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science, 365, eaax1839(2019).

    [26] A. Arbabi et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 7, 13682(2016).

    [27] Y. Zhou et al. Flat optics for image differentiation. Nat. Photonics, 14, 316-323(2020).

    [28] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [29] Z.-B. Fan et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl., 10, 014005(2018).

    [30] R. Lin et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227-231(2019).

    [31] C. Chen et al. Spectral tomographic imaging with aplanatic metalens. Light Sci. Appl., 8, 99(2019).

    [32] G. Jin et al. Lens-free shadow image based high-throughput continuous cell monitoring technique. Biosens. Bioelectron., 38, 126-131(2012).

    [33] L. Huang et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750-5755(2012).

    [34] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [35] J. Engelberg et al. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics, 9, 361-370(2020).

    [36] J. M. Moghimi et al. Micro-Fresnel-zone-plate array on flexible substrate for large field-of-view and focus scanning. Sci. Rep., 5, 15861(2016).

    [37] R. Ng et al. Light field photography with a hand-held plenoptic camera(2005).

    [38] R. Prevedel et al. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods, 11, 727-730(2014).

    [39] S. Boroviks et al. Multifunctional metamirror: polarization splitting and focusing. ACS Photonics, 5, 1648-1653(2017).

    [40] L. Jin et al. Noninterleaved metasurface for (261) spin- and wavelength-encoded holograms. Nano Lett., 18, 8016-8024(2018). https://doi.org/10.1021/acs.nanolett.8b04246

    [41] N. A. Rubin et al. Polarization state generation and measurement with a single metasurface. Opt. Express, 26, 21455-21478(2018).

    [42] B. Groever et al. High-efficiency chiral meta-lens. Sci. Rep., 8, 7240(2018).

    [43] A. C. Overvig et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl., 8, 92(2019).

    [44] P. Huo et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett., 20, 2791-2798(2020).

    [45] R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses. IEEE J. Rob. Autom., 3, 323-344(1987).

    CLP Journals

    [1] Shibiao Wei, Guiyuan Cao, Han Lin, Haoran Mu, Wenbo Liu, Xiaocong Yuan, Michael Somekh, Baohua Jia. High tolerance detour-phase graphene-oxide flat lens[J]. Photonics Research, 2021, 9(12): 2454

    [2] Yiwu Yuan, Jierong Cheng, Fei Fan, Xianghui Wang, Shengjiang Chang. Control of angular dispersion in dielectric gratings for multifunctional wavefront shaping and dynamic polarization conversion[J]. Photonics Research, 2021, 9(11): 2190

    [3] Dewen Cheng, Jiaxi Duan, Hailong Chen, He Wang, Danyang Li, Qiwei Wang, Qichao Hou, Tong Yang, Weihong Hou, Donghua Wang, Xiaoyu Chi, Bin Jiang, Yongtian Wang. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research, 2022, 10(1): 21

    Beibei Xu, Hanmeng Li, Shenglun Gao, Xia Hua, Cheng Yang, Chen Chen, Feng Yan, Shining Zhu, Tao Li. Metalens-integrated compact imaging devices for wide-field microscopy[J]. Advanced Photonics, 2020, 2(6): 066004
    Download Citation