• Acta Optica Sinica
  • Vol. 41, Issue 17, 1723001 (2021)
Yuanshuai Lü1、2, Chenggen Wang1、2, Wei Yuan1、2, Guiju Zhang1、2、*, and Kaiyue Qi3、**
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • 2Key Lab of Advanced Optical Manufacture Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Suzhou, Jiangsu 215006, China;
  • 3School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/AOS202141.1723001 Cite this Article Set citation alerts
    Yuanshuai Lü, Chenggen Wang, Wei Yuan, Guiju Zhang, Kaiyue Qi. Reconfigurable Mode Multiplexer Waveguide Switch Based on Phase Change Material[J]. Acta Optica Sinica, 2021, 41(17): 1723001 Copy Citation Text show less
    References

    [1] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 7, 354-362(2013).

    [2] Chen H M, Zhuang Y Y. Research progress on key technologies in mode division multiplexing system[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 38, 37-44(2018).

    [3] Li X, Zhang L J, Huang B et al. Stokes space multiplexing system using spectrum compression[J]. Laser & Optoelectronics Progress, 57, 090602(2020).

    [4] He Y, Zhang Y, Zhu Q M et al. Silicon high-order mode (de)multiplexer on single polarization[J]. Journal of Lightwave Technology, 36, 5746-5753(2018).

    [5] Wang F, Yang J Y, Chen L M et al. Optical switch based on multimode interference coupler[J]. IEEE Photonics Technology Letters, 18, 421-423(2006).

    [6] Luo L W, Ophir N, Chen C P et al. WDM-compatible mode-division multiplexing on a silicon chip[J]. Nature Communications, 5, 3069(2014).

    [7] Wang L L, Zhang D M, Lian T H et al. Polymeric waveguide thermo-optic switch based on directional coupler[J]. Chinese Journal of Lasers, 47, 0704002(2020).

    [8] Tao H, Mi Y A, Ren W H et al. Vector mode conversion based on tilted long-period fiber grating written in ring fiber[J]. Chinese Journal of Lasers, 47, 0606002(2020).

    [9] Sun J, Wu Y D, Wu W F et al. Optimization of polarization-dependent loss of arrayed waveguide grating demultiplexer[J]. Chinese Journal of Lasers, 47, 0106003(2020).

    [10] Stern B, Zhu X L, Chen C P et al. On-chip mode-division multiplexing switch[J]. Optica, 2, 530-535(2015).

    [11] Tu X, Chen Z M, Fu H Y. Reivew of silicon photonic switches[J]. Acta Physica Sinica, 68, 104210(2019).

    [12] Yang L, Zhou T, Jia H et al. General architectures for on-chip optical space and mode switching[J]. Optica, 5, 180-187(2018).

    [13] Duan F, Chen K, Chen D et al. Low-power and high-speed 2×2 thermo-optic MMI-MZI switch with suspended phase arms and heater-on-slab structure[J]. Optics Letters, 46, 234-237(2021).

    [14] Sun C L, Wu W H, Yu Y et al. De-multiplexing free on-chip low-loss multimode switch enabling reconfigurable inter-mode and inter-path routing[J]. Nanophotonics, 7, 1571-1580(2018).

    [15] Ye M Y, Yu Y, Sun C L et al. On-chip data exchange for mode division multiplexed signals[J]. Optics Express, 24, 528-535(2016).

    [16] Zhou L, Soref R, Chen J. Wavelength-selective switching using double-ring resonators coupled by a three-waveguide directional coupler[J]. Optics Express, 23, 13488-13498(2015).

    [17] Xiong Y L, Priti R B, Liboiron-Ladouceur O. High-speed two-mode switch for mode-division multiplexing optical networks[J]. Optica, 4, 1098-1102(2017).

    [18] Nie L X, Zhang Y, Xian S L et al. High-speed and low-insertion-loss silicon waveguide phase shifter based on high mobility transparent conductive oxides[J]. Laser & Optoelectronics Progress, 56, 152302(2019).

    [19] Zheng J J, Khanolkar A, Xu P P et al. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform[J]. Optical Materials Express, 8, 1551-1561(2018).

    [20] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage[J]. Nature Materials, 6, 824-832(2007).

    [21] Shportko K, Kremers S, Woda M et al. Resonant bonding in crystalline phase-change materials[J]. Nature Materials, 7, 653-658(2008).

    [22] Wuttig M, Bhaskaran H, Taubner T. Phase-change materials for non-volatile photonic applications[J]. Nature Photonics, 11, 465-476(2017).

    [23] Miller K J, Haglund R F, Weiss S M. Optical phase change materials in integrated silicon photonic devices: review[J]. Optical Materials Express, 8, 2415-2429(2018).

    [24] Hudgens S, Johnson B. Overview of phase-change chalcogenide nonvolatile memory technology[J]. MRS Bulletin, 29, 829-832(2004).

    [25] Stegmaier M, Ríos C, Bhaskaran H et al. Nonvolatile all-optical 1×2 switch for chipscale photonic networks[J]. Advanced Optical Materials, 5, 1600346(2017).

    [26] Zhang Y F, Li J Y, Chou J et al. Broadband transparent optical phase change materials. [C]∥Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California. Washington, D.C.: OSA, JTh5C, 4(2017).

    [27] Zhang Q H, Zhang Y F, Li J Y et al. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit[J]. Optics Letters, 43, 94-97(2018).

    [28] Jiang W F. Nonvolatile and ultra-low-loss reconfigurable mode (de) multiplexer/switch using triple-waveguide coupler with Ge2Sb2Se4Te1 phase change material[J]. Scientific Reports, 8, 15946(2018).

    [29] de Leonardis F, Soref R, Passaro V M N et al. Broadband electro-optical crossbar switches using low-loss Ge2Sb2Se4Te1 phase change material[J]. Journal of Lightwave Technology, 37, 3183-3191(2019).

    [30] Chen H X, Jia H, Wang T et al. Broadband nonvolatile tunable mode-order converter based on silicon and optical phase change materials hybrid meta-structure[J]. Journal of Lightwave Technology, 38, 1874-1879(2020).

    [31] Jiang W F. Rahman B M A. Compact and nonvolatile mode-selective switch with nano-heater[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1-10(2020).

    [32] Hardy A, Streifer W. Coupled mode theory of parallel waveguides[J]. Journal of Lightwave Technology, 3, 1135-1146(2003).

    [33] Xiao H F, Liu Z L, Han X et al. On-chip reconfigurable and scalable optical mode multiplexer/demultiplexer based on three-waveguide-coupling structure[J]. Optics Express, 26, 22366-22377(2018).

    [34] Marom E, Ramer O, Ruschin S. Relation between normal-mode and coupled-mode analyses of parallel waveguides[J]. IEEE Journal of Quantum Electronics, 20, 1311-1319(1984).

    [35] Wilson D W, Glytsis E N, Gaylord T K. Supermode analysis of electron wave directional coupling using a multilayer waveguide approach[J]. Journal of Applied Physics, 73, 3352-3366(1993).

    [36] Lee S Y, Darmawan S, Lee C W et al. Transformation between directional couplers and multi-mode interferometers based on ridge waveguides[J]. Optics Express, 12, 3079-3085(2004).

    [37] Salandrino A, Makris K, Christodoulides D N et al. Analysis of a three-core adiabatic directional coupler[J]. Optics Communications, 282, 4524-4526(2009).

    [38] Chen X, Meng W, Lou C B. Structure of adiabatic coupled supersymmetric waveguides[J]. Acta Optica Sinica, 39, 0223001(2019).

    [39] Yariv A. Quantum electronics[M]. 3rd ed. New York: John Wiley and Sons, 600-640(1989).

    [40] Ye C R, Liu K, Soref R A et al. A compact plasmonic MOS-based 2×2 electro-optic switch[J]. Nanophotonics, 4, 261-268(2015).

    Yuanshuai Lü, Chenggen Wang, Wei Yuan, Guiju Zhang, Kaiyue Qi. Reconfigurable Mode Multiplexer Waveguide Switch Based on Phase Change Material[J]. Acta Optica Sinica, 2021, 41(17): 1723001
    Download Citation