• Journal of Semiconductors
  • Vol. 42, Issue 8, 082801 (2021)
Jianyun Zhao1, Xu Li1, Ting Liu1, Yong Lu1, and Jicai Zhang1、2
Author Affiliations
  • 1College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
  • 2State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • show less
    DOI: 10.1088/1674-4926/42/8/082801 Cite this Article
    Jianyun Zhao, Xu Li, Ting Liu, Yong Lu, Jicai Zhang. First-principles study of the growth and diffusion of B and N atoms on the sapphire surface with h-BN as the buffer layer[J]. Journal of Semiconductors, 2021, 42(8): 082801 Copy Citation Text show less
    References

    [1] A K Geim, K S Novoselov. The rise of graphene. Nat Mater, 6, 183(2007).

    [2] J G Wang, X J Mu, X X Wang et al. The thermal and thermoelectric properties of in-plane C-BN hybrid structures and graphene/h-BN van der Waals heterostructures. Mater Today Phys, 5, 29(2018).

    [3] Q Tang, Z Zhou. Graphene-analogous low-dimensional materials. Prog Mater Sci, 58, 1244(2013).

    [4] J G Wang, F C Ma, M T Sun. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Adv, 7, 16801(2017).

    [5] Y X Song, C R Zhang, B Li et al. Triggering the atomic layers control of hexagonal boron nitride films. Appl Surf Sci, 313, 647(2014).

    [6] R Dahal, J Li, S Majety et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl Phys Lett, 98, 211110(2011).

    [7] T C Doan, S Majety, S Grenadier et al. Fabrication and characterization of solid-state thermal neutron detectors based on hexagonal boron nitride epilayers. Nucl Instrum Methods Phys Res Sect A, 748, 84(2014).

    [8] H X Jiang, J Y Lin. Hexagonal boron nitride for deep ultraviolet photonic devices. Semicond Sci Technol, 29, 084003(2014).

    [9] L C Cai, X H Fan, H T Su et al. First principles calculation of the lattice constants of hexagonal and cubic boron nitride to 3000 K and 30 GPa. Ferroelectrics, 566, 136(2020).

    [10] J Hafner. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J Comput Chem, 29, 2044(2008).

    [11] D J Chadi. Special points for Brillouin-zone integrations. Phys Rev B, 16, 1746(1977).

    [12] X Yang, S Nitta, K Nagamatsu et al. Growth of hexagonal boron nitride on sapphire substrate by pulsed-mode metalorganic vapor phase epitaxy. J Cryst Growth, 482, 1(2018).

    [13] H Chikh, F SI Ahmed, A Afir et al. In-situ X-ray diffraction study of alumina α-Al2O3 thermal behavior under dynamic vacuum and constant flow of nitrogen. J Alloy Compd, 654, 509(2016).

    [14] J H Wu, F Hagelberg, K Sattler. First-principles calculations of small silicon clusters adsorbed on a graphite surface. Phys Rev B, 72, 085441(2005).

    [15] A Govind Rajan, M S Strano, D Blankschtein. Ab initio molecular dynamics and lattice dynamics-based force field for modeling hexagonal boron nitride in mechanical and interfacial applications. J Phys Chem Lett, 9, 1584(2018).

    [16] A Zoroddu, F Bernardini, P Ruggerone et al. First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory. Phys Rev B, 64, 045208(2001).

    [17] A Shigemi, T Wada. Enthalpy of formation of various phases and formation energy of point defects in perovskite-type NaNbO3 by first-principles calculation. Jpn J Appl Phys, 43, 6793(2004).

    [18] I K Petrushenko, K B Petrushenko. Stone-Wales defects in graphene-like boron nitride-carbon heterostructures: Formation energies, structural properties, and reactivity. Comput Mater Sci, 128, 243(2017).

    [19] S Nosé. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys, 81, 511(1984).

    [20]

    [21] M H Kowsari, S Alavi, M Ashrafizaadeh et al. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient. J Chem Phys, 129, 224508(2008).

    [22] K Sadki, F Z Zanane, M Ouahman et al. Molecular dynamics study of pristine and defective hexagonal BN, SiC and SiGe monolayers. Mater Chem Phys, 242, 122474(2020).

    [23] T Nagai, S Tsurumaki, R Urano et al. Position-dependent diffusion constant of molecules in heterogeneous systems as evaluated by the local mean squared displacement. J Chem Theory Comput, 16, 7239(2020).

    [24] V R Manga, D R Poirier. Ab initio molecular dynamics simulation of self-diffusion in Al–Si binary melts. Model Simul Mater Sci Eng, 26, 065006(2018).

    [25] M Chubarov, H Högberg, A Henry et al. Challenge in determining the crystal structure of epitaxial 0001 oriented sp 2 -BN films. J Vac Sci Technol A, 36, 030801(2018).

    [26] D Skuridina, D V Dinh, M Pristovsek et al. Surface and crystal structure of nitridated sapphire substrates and their effect on polar InN layers. Appl Surf Sci, 307, 461(2014).

    [27] F Dwikusuma, T F Kuech. X-ray photoelectron spectroscopic study on sapphire nitridation for GaN growth by hydride vapor phase epitaxy: Nitridation mechanism. J Appl Phys, 94, 5656(2003).

    Jianyun Zhao, Xu Li, Ting Liu, Yong Lu, Jicai Zhang. First-principles study of the growth and diffusion of B and N atoms on the sapphire surface with h-BN as the buffer layer[J]. Journal of Semiconductors, 2021, 42(8): 082801
    Download Citation