• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 5, 533 (2020)
Kai-Qi XU1, Huang XU2, Jia-Zhen ZHANG2, Xiang-Dong WU2, Lu-Han YANG2, Jie ZHOU2, Fang-Ting LIN1、*, Lin WANG2, and Gang CHEN2
Author Affiliations
  • 1Shanghai Normal University, Shanghai200234, China
  • 2State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.05.001 Cite this Article
    Kai-Qi XU, Huang XU, Jia-Zhen ZHANG, Xiang-Dong WU, Lu-Han YANG, Jie ZHOU, Fang-Ting LIN, Lin WANG, Gang CHEN. Graphene/GaAs heterostructure based Millimeter/Terahertz wave photodetector[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 533 Copy Citation Text show less
    References

    [1] W. Monch. On the physics of metal-semiconductor interfaces. Reports on Progress in Physics, 53, 221-278(1990).

    [2] H Liu, C Song, A Springthorpe et al. Terahertz quantum-well photodetector. Applied Physics Letters, 84, 4068-4070(2004).

    [3] S Kopylov, A Tzalenchuk, S Kubatkin et al. Charge transfer between epitaxial graphene and silicon carbide. Applied Physics Letters, 97(2010).

    [4] L Vicarelli, M S Vitiello, D Coquillat et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 11, 865-871(2012).

    [5] W Knap, F Teppe, Y Meziani et al. Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors. Applied Physics Letters, 85, 675-677(2004).

    [6] K Peng, P Parkinson, L Fu et al. Single Nanowire Photoconductive Terahertz Detectors. Nano Letters, 15, 206-210(2015).

    [7] Dyakonov, Michael, M. Shur. Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Physical Review Letters, 71, 2465-2468(1993).

    [8] C W Berry, N Wang, M R Hashemi et al. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nature Communications(4).

    [9] E Castro-Camus, J Lloyd-Hughes, M B Johnston et al. Polarization-sensitive terahertz detection by multicontact photoconductive receivers. Applied Physics Letters, 86(2005).

    [10] F H L Koppens, T Mueller, P Avouris et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 9, 780-793(2014).

    [11] X Cai, A B Sushkov, R J Suess et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nature Nanotechnology, 9, 814-819(2014).

    [12] L Viti, J Hu, Coquillat, Dominique.. Black Phosphorus Terahertz Photodetectors. Advanced Materials, 27, 5567-5572(2015).

    [13] J Yan, M H Kim, J A Elle et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotechnology, 7, 472-478(2012).

    [14] Y F Lao, A G U Perera, L H Li et al. Tunable hot-carrier photodetection beyond the bandgap spectral limit. Nature Photonics, 8, 412-418(2014).

    [15] Y J Hong, J W Yang, W H Lee et al. Van der Waals epitaxial double heterostructure: InAs/single-layer graphene/InAs. Advanced Materials, 25, 6914-6914(2013).

    [16] S Chen, Z Han, M M Elahi et al. Electron optics with p-n junctions in ballistic graphene. Science Letter, 353, 1522-1525(2016).

    [17] A K J S Geim. Graphene: status and prospects. science, 324, 1530-1534(2009).

    [18] X Li, W Chen, P Wang et al. 18.5% Efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy, 16, 310-319(2015).

    [19] R R Nair, P Blake, Grigorenko et al. Fine structure constant defines visual transparency of graphene. Science, 320, 1308-1308(2008).

    [20] K Rezgui, R Othmen, A Cavanna et al. The improvement of InAs/GaAs quantum dot properties capped by Graphene. Journal of Raman Spectroscopy, 44, 1529-1533(2013).

    [21] J Wu, Z Yang, C Qiu et al. Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles. Nanoscale, 10, 8023-8030(2018).

    [22] M Jiang, H Y Xiao, S M Peng et al. A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures. Scientific reports, 8, 2012(2018).

    [23] Q L Liu, Z Y Zhao, J H Yi. Interfacial interaction and effects of GaAs/Graphene hetero-structures studied by First-principle calculations. Journal of Alloys and Compounds, 795, 351-360(2019).

    [24] Zhi Ting Hu, Tao Gan, Lei Du et al. A novel photodetector based on Graphene/InAs quantum dots/GaAs hetero-junction. Journal of Infrared and Millimeter Waves, 38(2019).

    [25] A C Ferrari, J C Meyer, V. Scardaci et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 97, 187401(2006).

    [26] L M Malard, M A Pimenta, G Dresselhaus et al. Raman spectroscopy in graphene. Physics Reports, 473, 51-87(2009).

    [27] F Tuinstra, J L Koenig. Raman Spectrum of Graphite. The Journal of Chemical Physics, 53, 1126-1130(1970).

    [28] X Yang, J Sun, Qin et al. Room-temperature terahertz detection based on CVD graphene transistor. Chinese Physics B, 24, 47206-047206(2015).

    [29] P L Richards. Bolometers for infrared and millimeter waves. J. Appl. Phys, 76, 1-24(1994).

    [30] R Tauk, F Teppe, S Boubanga et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Applied Physics Letters, 89(2006).

    [31] W Tang, A Politano, C Guo et al. Ultrasensitive Room-Temperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator. Advanced Functional Materials, 28, 1801786(2018).

    [32] C Liu, L Du, W Tang et al. Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors. Npg Asia Materials, 318-327(2018).

    [33] J Wu, Z Yang, C Qiu et al. Junction investigation of graphene/silicon Schottky diodes. Nanoscale research letters, 7, 302-302(2012).

    [34] H Mark et al. . Graphene: Piecing it together. Advanced Materials, 23, 4471-4490(2011).

    Kai-Qi XU, Huang XU, Jia-Zhen ZHANG, Xiang-Dong WU, Lu-Han YANG, Jie ZHOU, Fang-Ting LIN, Lin WANG, Gang CHEN. Graphene/GaAs heterostructure based Millimeter/Terahertz wave photodetector[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 533
    Download Citation