• Chinese Journal of Lasers
  • Vol. 50, Issue 1, 0113008 (2023)
Yuxuan Ke1, Yingqian Cen2, Dianyu Qi2、*, Wenjing Zhang2、**, and Qing Zhang1、***
Author Affiliations
  • 1School of Materials Science and Engineering, Peking University, Beijing 100871, China
  • 2International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, Guangdong , China
  • show less
    DOI: 10.3788/CJL221133 Cite this Article Set citation alerts
    Yuxuan Ke, Yingqian Cen, Dianyu Qi, Wenjing Zhang, Qing Zhang. Two‑Dimensional Materials Photodetectors for Optical Communications[J]. Chinese Journal of Lasers, 2023, 50(1): 0113008 Copy Citation Text show less
    References

    [1] Wang F, Wang Z X, Yin L et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection[J]. Chemical Society Reviews, 47, 6296-6341(2018).

    [2] Koppens F H L, Mueller T, Avouris P et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 9, 780-793(2014).

    [3] Konstantatos G. Current status and technological prospect of photodetectors based on two-dimensional materials[J]. Nature Communications, 9, 5266(2018).

    [4] Sun Z H, Chang H X. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology[J]. ACS Nano, 8, 4133-4156(2014).

    [5] Buscema M, Island J O, Groenendijk D J et al. Photocurrent generation with two-dimensional van der Waals semiconductors[J]. Chemical Society Reviews, 44, 3691-3718(2015).

    [6] Wang F K, Zhang Y, Gao Y et al. 2D metal chalcogenides for IR photodetection[J]. Small, 15, 1901347(2019).

    [7] Wang Z, Wang P, Wang F et al. A noble metal dichalcogenide for high‐performance field‐effect transistors and broadband photodetectors[J]. Advanced Functional Materials, 30, 1907945(2020).

    [8] Guan X W, Yu X C, Periyanagounder D et al. Recent progress in short-to long-wave infrared photodetection using 2D materials and heterostructures[J]. Advanced Optical Materials, 9, 2001708(2021).

    [9] Jiang J, Wen Y, Wang H et al. Recent advances in 2D materials for photodetectors[J]. Advanced Electronic Materials, 7, 2001125(2021).

    [10] Xie C, Mak C H, Tao X M et al. Photodetectors based on two-dimensional layered materials beyond graphene[J]. Advanced Functional Materials, 27, 1603886(2017).

    [11] Azar N S, Bullock J, Shrestha V R et al. Long-wave infrared photodetectors based on 2D platinum diselenide atop optical cavity substrates[J]. ACS Nano, 15, 6573-6581(2021).

    [12] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [13] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [14] Li F, Zheng J B, Yao Q et al. Recent progress of silicon integrated light emitters and photodetectors for optical communication based on two-dimensional materials[J]. Optical Materials Express, 11, 3298-3320(2021).

    [15] Wang G Y, Zhang Y Z, You C Y et al. Two dimensional materials based photodetectors[J]. Infrared Physics & Technology, 88, 149-173(2018).

    [16] Mak K F, Lee C G, Hone J et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 105, 136805(2010).

    [17] Jin W C, Yeh P C, Zaki N et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy[J]. Physical Review Letters, 111, 106801(2013).

    [18] Wang Q H, Kalantar-Zadeh K, Kis A et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 7, 699-712(2012).

    [19] Jin Y, Keum D H, An S J et al. A van der Waals homojunction: ideal p-n diode behavior in MoSe2[J]. Advanced Materials, 27, 5534-5540(2015).

    [20] Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 438, 197-200(2005).

    [21] Novoselov K S, Jiang Z, Zhang Y et al. Room-temperature quantum Hall effect in graphene[J]. Science, 315, 1379(2007).

    [22] Xia F N, Mueller T, Lin Y M et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 4, 839-843(2009).

    [23] Li J H, Niu L Y, Zheng Z J et al. Photosensitive graphene transistors[J]. Advanced Materials, 26, 5239-5273(2014).

    [24] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [25] Bao W, Jing L, Velasco J et al. Stacking-dependent band gap and quantum transport in trilayer graphene[J]. Nature Physics, 7, 948-952(2011).

    [26] Shi Z, Cao R, Khan K et al. Two-dimensional tellurium: progress, challenges, and prospects[J]. Nano-Micro Letters, 12, 99(2020).

    [27] Wang F K, Li L G, Huang W J et al. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength[J]. Advanced Functional Materials, 28, 1802707(2018).

    [28] Chen E, Xu W S, Chen J et al. 2D layered noble metal dichalcogenides (Pt, Pd, Se, S) for electronics and energy applications[J]. Materials Today Advances, 7, 100076(2020).

    [29] Pi L J, Li L, Liu K L et al. Recent progress on 2D noble-transition-metal dichalcogenides[J]. Advanced Functional Materials, 29, 1904932(2019).

    [30] Wang Y W, Zhou L, Zhong M et al. Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects[J]. Nano Research, 15, 3675-3694(2022).

    [31] Watanabe K, Taniguchi T, Kanda H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal[J]. Nature Materials, 3, 404-409(2004).

    [32] Ross J S, Klement P, Jones A M et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions[J]. Nature Nanotechnology, 9, 268-272(2014).

    [33] Li L K, Ye G J, Tran V et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films[J]. Nature Nanotechnology, 10, 608-613(2015).

    [34] Novoselov K S, Mishchenko A, Carvalho A et al. 2D materials and van der Waals heterostructures[J]. Science, 353, aac9439(2016).

    [35] Ajayan P, Kim P, Banerjee K. Two-dimensional van der Waals materials[J]. Physics Today, 69, 38-44(2016).

    [36] Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 499, 419-425(2013).

    [37] Huang X, Tan C L, Yin Z Y et al. 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials[J]. Advanced Materials, 26, 2185-2204(2014).

    [38] Liu C H, Chang Y C, Norris T B et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 9, 273-278(2014).

    [39] Guo Q S, Pospischil A, Bhuiyan M et al. Black phosphorus mid-infrared photodetectors with high gain[J]. Nano Letters, 16, 4648-4655(2016).

    [40] Youngblood N, Chen C, Koester S J et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current[J]. Nature Photonics, 9, 247-252(2015).

    [41] Engel M, Steiner M, Avouris P. Black phosphorus photodetector for multispectral, high-resolution imaging[J]. Nano Letters, 14, 6414-6417(2014).

    [42] Manzeli S, Ovchinnikov D, Pasquier D et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2, 17033(2017).

    [43] Long M S, Wang Y, Wang P et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability[J]. ACS Nano, 13, 2511-2519(2019).

    [44] Zhao Y D, Qiao J S, Yu P et al. Extraordinarily strong interlayer interaction in 2D layered PtS2[J]. Advanced Materials, 28, 2399-2407(2016).

    [45] Zhao Y D, Qiao J S, Yu Z H et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs[J]. Advanced Materials, 29, 1604230(2017).

    [46] Rivera M, Velázquez R, Aldalbahi A et al. High operating temperature and low power consumption boron nitride nanosheets based broadband UV photodetector[J]. Scientific Reports, 7, 42973(2017).

    [47] Zhou A F, Aldalbahi A, Feng P. Vertical metal-semiconductor-metal deep UV photodetectors based on hexagonal boron nitride nanosheets prepared by laser plasma deposition[J]. Optical Materials Express, 6, 3286-3292(2016).

    [48] Sajjad M, Jadwisienczak W M, Feng P. Nanoscale structure study of boron nitride nanosheets and development of a deep-UV photo-detector[J]. Nanoscale, 6, 4577-4582(2014).

    [49] Cui X, Lee G H, Kim Y D et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform[J]. Nature Nanotechnology, 10, 534-540(2015).

    [50] Massicotte M, Schmidt P, Vialla F et al. Picosecond photoresponse in van der Waals heterostructures[J]. Nature Nanotechnology, 11, 42-46(2016).

    [51] Ke Y X, Song X F, Qi D Y et al. Modulation of electrical properties with controllable local doping in multilayer MoTe2 transistors[J]. Advanced Electronic Materials, 6, 2000532(2020).

    [52] Ke Y X, Qi D Y, Han C et al. Facile p-doping of few-layer MoTe2 by controllable surface oxidation toward high-performance complementary devices[J]. ACS Applied Electronic Materials, 2, 920-926(2020).

    [53] Mueller T, Xia F N, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 4, 297-301(2010).

    [54] Alexander U, Karl U, Thomas M. Intrinsic response time of graphene photodetectors[J]. Nano Letters, 11, 2804-2808(2011).

    [55] Schall D, Neumaier D, Mohsin M et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems[J]. ACS Photonics, 1, 781-784(2014).

    [56] Chen Z F, Cheng Z Z, Wang J Q et al. High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode[J]. Advanced Optical Materials, 3, 1207-1214(2015).

    [57] Yu X C, Dong Z G, Liu Y P et al. A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2[J]. Nanoscale, 8, 327-332(2016).

    [58] Liu Y, Sun T, Ma W L et al. Highly responsive broadband black phosphorus photodetectors[J]. Chinese Optics Letters, 16, 020002(2018).

    [59] Amani M, Tan C L, Zhang G et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors[J]. ACS Nano, 12, 7253-7263(2018).

    [60] Shen C F, Liu Y H, Wu J B et al. Tellurene photodetector with high gain and wide bandwidth[J]. ACS Nano, 14, 303-310(2020).

    [61] Ma W L, Gao Y Q, Shang L Y et al. Ultrabroadband tellurium photoelectric detector from visible to millimeter wave[J]. Advanced Science, 9, 2103873(2022).

    [62] Song J W, Yuan S, Cui C C et al. High-efficiency and high-speed germanium photodetector enabled by multiresonant photonic crystal[J]. Nanophotonics, 10, 1081-1087(2021).

    [63] Yao J D, Shao J M, Yang G W. Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature[J]. Scientific Reports, 5, 12320(2015).

    [64] Nidhi, Jakhar A, Uddin W et al. Nanolayered black arsenic-silicon lateral heterojunction photodetector for visible to mid-infrared wavelengths[J]. ACS Applied Nano Materials, 3, 9401-9409(2020).

    [65] Wang X D, Wang P, Wang J L et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics[J]. Advanced Materials, 27, 6575-6581(2015).

    [66] Ma P, Flöry N, Salamin Y et al. Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths[J]. ACS Photonics, 5, 1846-1852(2018).

    [67] Maiti R, Patil C, Saadi M A S R et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits[J]. Nature Photonics, 14, 578-584(2020).

    [68] Lai J W, Liu X, Ma J C et al. Anisotropic broadband photoresponse of layered type-II weyl semimetal MoTe2[J]. Advanced Materials, 30, 1707152(2018).

    [69] Wang Y, Zhou Y Q, Zhang Z Y et al. 40 GHz waveguide-integrated two-dimensional palladium diselenide photodetectors[J]. Applied Physics Letters, 120, 231102(2022).

    [70] Wu J H, Ma H, Zhong C Y et al. Waveguide-integrated PdSe2 photodetector over a broad infrared wavelength range[J]. Nano Letters, 22, 6816-6824(2022).

    [71] Shawkat M S, Hafiz S B, Islam M M et al. Scalable van der waals two-dimensional PtTe2 layers integrated onto silicon for efficient near-to-mid infrared photodetection[J]. ACS Applied Materials & Interfaces, 13, 15542-15550(2021).

    [72] Sharma A, Srivastava A K, Senguttuvan T D et al. Robust broad spectral photodetection (UV-NIR) and ultra high responsivity investigated in nanosheets and nanowires of Bi2Te3 under harsh nano-milling conditions[J]. Scientific Reports, 7, 17911(2017).

    [73] Jeon J, Choi H, Choi S et al. Transition-metal-carbide (Mo2C) multiperiod gratings for realization of high-sensitivity and broad-spectrum photodetection[J]. Advanced Functional Materials, 29, 1905384(2019).

    [74] Ye L, Li H, Chen Z F et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction[J]. ACS Photonics, 3, 692-699(2016).

    [75] Ye L, Wang P, Luo W J et al. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure[J]. Nano Energy, 37, 53-60(2017).

    [76] Zhang K A, Zhang T N, Cheng G H et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures[J]. ACS Nano, 10, 3852-3858(2016).

    [77] Qi T L, Gong Y P, Li A L et al. Interlayer transition in a vdW heterostructure toward ultrahigh detectivity shortwave infrared photodetectors[J]. Advanced Functional Materials, 30, 1905687(2020).

    [78] Xue H, Wang Y D, Dai Y Y et al. A MoSe2/WSe2 heterojunction-based photodetector at telecommunication wavelengths[J]. Advanced Functional Materials, 28, 1804388(2018).

    [79] Jo S H, Lee H W, Shim J et al. Highly efficient infrared photodetection in a gate-controllable van der waals heterojunction with staggered bandgap alignment[J]. Advanced Science, 5, 1700423(2018).

    [80] Long M S, Liu E F, Wang P et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 16, 2254-2259(2016).

    [81] Li A L, Chen Q X, Wang P P et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/graphene/SnS2 p-g-n junctions[J]. Advanced Materials, 31, 1805656(2019).

    [82] Ma Y D, Dai Y, Niu C W et al. Halogenated two-dimensional germanium: candidate materials for being of quantum spin hall state[J]. Journal of Materials Chemistry, 22, 12587-12591(2012).

    [83] Zhang S L, Xie M Q, Li F Y et al. Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities[J]. Angewandte Chemie (International Ed. in English), 55, 1666-1669(2016).

    [84] Zhang S L, Yan Z, Li Y F et al. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions[J]. Angewandte Chemie International Edition, 54, 3112-3115(2015).

    [85] Xie Z J, Zhang B, Ge Y Q et al. Chemistry, functionalization, and applications of recent monoelemental two-dimensional materials and their heterostructures[J]. Chemical Reviews, 122, 1127-1207(2022).

    [86] Lezama I G, Arora A, Ubaldini A et al. Indirect-to-direct band gap crossover in few-layer MoTe₂[J]. Nano Letters, 15, 2336-2342(2015).

    [87] Wei M Y, Lian J, Jiang Q F et al. Ellipsometry study on optical properties of two-dimensional platinum selenide film[J]. Chinese Journal of Lasers, 48, 1203002(2021).

    [88] Zhang X W, Shao J H, Yan C X et al. A review on optoelectronic device applications of 2D transition metal carbides and nitrides[J]. Materials & Design, 200, 109452(2021).

    [89] Wang F, Wang Z X, Yin L et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection[J]. Chemical Society Reviews, 47, 6296-6341(2018).

    [90] Long M S, Wang P, Fang H H et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 29, 1803807(2019).

    [91] Yao J, Miao X, Wang S et al. Preparation of graphene-MoS2 vertical heterojunction for high-responsivity photodetectors[J]. Laser & Optoelectronics Progress, 58, 1516024(2021).

    [92] Lin Y N, Wu Y D, Cheng H Y et al. Near-infrared integrated photodetector based on PdSe2 nanowires film/Si heterojunction[J]. Acta Optica Sinica, 41, 2125001(2021).

    [93] Gbadamasi S, Mohiuddin M, Krishnamurthi V et al. Interface chemistry of two-dimensional heterostructures-fundamentals to applications[J]. Chemical Society Reviews, 50, 4684-4729(2021).

    [94] Ahmad W, Liu J D, Jiang J Z et al. Strong interlayer transition in few‐layer InSe/PdSe2 van der waals heterostructure for near-infrared photodetection[J]. Advanced Functional Materials, 31, 2104143(2021).

    [95] Jariwala D, Marks T J, Hersam M C. Mixed-dimensional van der Waals heterostructures[J]. Nature Materials, 16, 170-181(2017).

    [96] Yuan J, Sun T, Hu Z X et al. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection[J]. ACS Applied Materials & Interfaces, 10, 40614-40622(2018).

    [97] Afzal A M, Dastgeer G, Iqbal M Z et al. High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse[J]. ACS Applied Materials & Interfaces, 12, 19625-19634(2020).

    [98] Wang G C, Li L, Fan W H et al. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance[J]. Advanced Functional Materials, 28, 1870151(2018).

    [99] Ding Y, Zhou N, Gan L et al. Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV-VIS-IR photodetectors[J]. Nano Energy, 49, 200-208(2018).

    [100] Cao R, Wang H D, Guo Z N et al. Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity[J]. Advanced Optical Materials, 7, 1970047(2019).

    [101] Kang X L, Lan C Y, Li F Z et al. Van der Waals PdSe2/WS2 heterostructures for robust high-performance broadband photodetection from visible to infrared optical communication band[J]. Advanced Optical Materials, 9, 2001991(2021).

    [102] Xue H, Dai Y Y, Kim W et al. High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure[J]. Nanoscale, 11, 3240-3247(2019).

    [103] Wu F, Xia H, Sun H D et al. AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity[J]. Advanced Functional Materials, 29, 1900314(2019).

    [104] Yao J D, Zheng Z Q, Yang G W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm[J]. Journal of Materials Chemistry C, 4, 7831-7840(2016).

    [105] Li H, Ye L, Xu J B. High-performance broadband floating-base bipolar phototransistor based on WSe2/BP/MoS2 heterostructure[J]. ACS Photonics, 4, 823-829(2017).

    [106] Vabbina P, Choudhary N, Chowdhury A A et al. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction[J]. ACS Applied Materials & Interfaces, 7, 15206-15213(2015).

    [107] Yu W Z, Li S J, Zhang Y P et al. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility[J]. Small, 13, 1700268(2017).

    [108] Song Z G, Wang Y K, Zhu Y K et al. Targeted transfer of self-assembled CdSe nanoplatelet film onto WS2 flakes to construct hybrid heterostructures[J]. Journal of Semiconductors, 42, 082901(2021).

    [109] Sun T, Ma W L, Liu D H et al. Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection[J]. Journal of Semiconductors, 41, 072907(2020).

    [110] Wang J, Han J Y, Chen X Q et al. Design strategies for two-dimensional material photodetectors to enhance device performance[J]. InfoMat, 33-53(2019).

    Yuxuan Ke, Yingqian Cen, Dianyu Qi, Wenjing Zhang, Qing Zhang. Two‑Dimensional Materials Photodetectors for Optical Communications[J]. Chinese Journal of Lasers, 2023, 50(1): 0113008
    Download Citation