• Photonics Research
  • Vol. 6, Issue 10, 948 (2018)
Xiaoxiao Xue*, Xiaoping Zheng, and Bingkun Zhou
Author Affiliations
  • Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.1364/PRJ.6.000948 Cite this Article Set citation alerts
    Xiaoxiao Xue, Xiaoping Zheng, Bingkun Zhou. Soliton regulation in microcavities induced by fundamental–second-harmonic mode coupling[J]. Photonics Research, 2018, 6(10): 948 Copy Citation Text show less
    References

    [1] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [2] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, R. Morandotti. Micro-combs: a novel generation of optical sources. Phys. Rep., 729, 1-81(2018).

    [3] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [4] A. Fülöp, M. Mazur, A. Lorences-Riesgo, T. A. Eriksson, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, V. Torres-Company. Long-haul coherent communications using microresonator-based frequency combs. Opt. Express, 25, 26678-26688(2017).

    [5] J. Pfeifle, A. Coillet, R. Henriet, K. Saleh, P. Schindler, C. Weimann, W. Freude, I. V. Balakireva, L. Larger, C. Koos, Y. K. Chembo. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. Phys. Rev. Lett., 114, 093902(2015).

    [6] A. A. Savchenkov, D. Eliyahu, W. Liang, V. S. Ilchenko, J. Byrd, A. B. Matsko, D. Seidel, L. Maleki. Stabilization of a Kerr frequency comb oscillator. Opt. Lett., 38, 2636-2639(2013).

    [7] S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, S. A. Diddams. Microresonator frequency comb optical clock. Optica, 1, 10-14(2014).

    [8] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [9] A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, M. Lipson. On-chip dual-comb source for spectroscopy. Sci. Adv., 4, e1701858(2018).

    [10] P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, C. Koos. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [11] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [12] S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, C. W. Wong. Globally stable microresonator Turing pattern formation for coherent high-power THz radiation on-chip. Phys. Rev. X, 7, 041002(2017).

    [13] X. Xue, A. M. Weiner. Microwave photonics connected with microresonator frequency combs. Front. Optoelectron., 9, 238-248(2016).

    [14] W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).

    [15] S. Diallo, Y. K. Chembo. Optimization of primary Kerr optical frequency combs for tunable microwave generation. Opt. Lett., 42, 3522-3525(2017).

    [16] X. Xue, Y. Xuan, H.-J. Kim, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. J. Lightwave Technol., 32, 3557-3565(2014).

    [17] X. Xue, Y. Xuan, C. Bao, S. Li, X. Zheng, B. Zhou, M. Qi, A. M. Weiner. Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control. J. Lightwave Technol., 36, 2312-2321(2018).

    [18] T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt. Express, 23, 22087-22097(2015).

    [19] X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photon., 2, 096104(2017).

    [20] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, T. J. Kippenberg. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [21] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594-600(2015).

    [22] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, M. Lipson. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 4, 37-40(2010).

    [23] H. Jung, C. Xiong, K. Y. Fong, X. Zhang, H. X. Tang. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett., 38, 2810-2813(2013).

    [24] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

    [25] B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, M. Loňcar. Diamond nonlinear photonics. Nat. Photonics, 8, 369-374(2014).

    [26] S. Lettieri, S. D. Finizio, P. Maddalena, V. Ballarini, F. Giorgis. Second-harmonic generation in amorphous silicon nitride microcavities. Appl. Phys. Lett., 81, 4706-4708(2002).

    [27] T. Ning, H. Pietarinen, O. Hyvärinen, J. Simonen, G. Genty, M. Kauranen. Strong second-harmonic generation in silicon nitride films. Appl. Phys. Lett., 100, 161902(2012).

    [28] A. Kitao, K. Imakita, I. Kawamura, M. Fujii. An investigation into second harmonic generation by Si-rich SiNx thin films deposited by RF sputtering over a wide range of Si concentrations. J. Phys. D, 47, 215101(2014).

    [29] S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, M. Lipson. On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities. Opt. Express, 22, 26517-26525(2014).

    [30] H. Jung, R. Stoll, X. Guo, D. Fischer, H. X. Tang. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica, 1, 396-399(2014).

    [31] X. Xue, F. Leo, Y. Xuan, J. A. Jaramillo-Villegas, P.-H. Wang, D. E. Leaird, M. Erkintalo, M. Qi, A. M. Weiner. Second-harmonic assisted four-wave mixing in chip-based microresonator frequency comb generation. Light Sci. Appl., 6, e16253(2017).

    [32] X. Guo, C.-L. Zou, H. Jung, Z. Gong, A. Bruch, L. Jiang, H. X. Tang. Efficient visible frequency comb generation via Cherenkov radiation from a Kerr microcomb(2017).

    [33] T. Hansson, F. Leo, M. Erkintalo, J. Anthony, S. Coen, I. Ricciardi, M. D. Rosa, S. Wabnitz. Single envelope equation modeling of multi-octave comb arrays in microresonators with quadratic and cubic nonlinearities. J. Opt. Soc. Am. B, 33, 1207-1215(2016).

    [34] X. Xue, X. Zheng, A. M. Weiner. Soliton trapping and comb self-referencing in a single microresonator with χ(2) and χ(3) nonlinearities. Opt. Lett., 42, 4147-4150(2017).

    [35] M. Karpov, H. Guo, A. Kordts, V. Brasch, M. H. P. Pfeiffer, M. Zervas, M. Geiselmann, T. J. Kippenberg. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett., 116, 103902(2016).

    [36] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, T. J. Kippenberg. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 113, 123901(2014).

    [37] X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, K. Vahala. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2017).

    [38] C. Bao, Y. Xuan, D. E. Leaird, S. Wabnitz, M. Qi, A. M. Weiner. Spatial mode-interaction induced single soliton generation in microresonators. Optica, 4, 1011-1015(2017).

    [39] S. Fujii, A. Hori, T. Kato, R. Suzuki, Y. Okabe, W. Yoshiki, A. C. Jinnai, T. Tanabe. Effect on Kerr comb generation in a clockwise and counter-clockwise mode coupled microcavity. Opt. Express, 25, 28969-28982(2017).

    [40] E. Obrzud, S. Lecomte, T. Herr. Temporal solitons in microresonators driven by optical pulses. Nat. Photonics, 11, 600-607(2017).

    [41] V. Ulvila, C. R. Phillips, L. Halonen, M. Vainio. Frequency comb generation by a continuous-wavepumped optical parametric oscillator based on cascading quadratic nonlinearities. Opt. Lett., 38, 4281-4284(2013).

    [42] I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. D. Natale, M. D. Rosa. Frequency comb generation in quadratic nonlinear media. Phys. Rev. A, 91, 063839(2015).

    [43] X. Guo, C.-L. Zou, H. Jung, H. X. Tang. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett., 117, 123902(2016).

    [44] C. Bao, C. Yang. Mode-pulling and phase-matching in broadband Kerr frequency comb generation. J. Opt. Soc. Am. B, 31, 3074-3080(2014).

    [45] D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, S. B. Papp. Soliton crystals in Kerr resonators. Nat. Photonics, 11, 671-676(2017).

    [46] Y. Wang, F. Leo, J. Fatome, M. Erkintalo, S. G. Murdoch, S. Coen. Universal mechanism for the binding of temporal cavity solitons. Optica, 4, 855-863(2017).

    [47] H. Taheri, A. B. Matsko, L. Maleki. Optical lattice trap for Kerr solitons. Eur. Phys. J. D, 71, 153(2017).

    [48] D. J. Wilson, S. Hönl, K. Schneider, M. Anderson, T. J. Kippenberg, P. Seidler. Gallium phosphide microresonator frequency combs. Conference on Lasers and Electro-Optics, SW3A.1(2018).

    CLP Journals

    [1] Jindong Wang, Zhizhou Lu, Weiqiang Wang, Fumin Zhang, Jiawei Chen, Yang Wang, Jihui Zheng, Sai T. Chu, Wei Zhao, Brent E. Little, Xinghua Qu, Wenfu Zhang. Long-distance ranging with high precision using a soliton microcomb[J]. Photonics Research, 2020, 8(12): 1964

    [2] Xinyu Wang, Peng Xie, Weiqiang Wang, Yang Wang, Zhizhou Lu, Leiran Wang, Sai T. Chu, Brent E. Little, Wei Zhao, Wenfu Zhang. Program-controlled single soliton microcomb source[J]. Photonics Research, 2021, 9(1): 66

    Xiaoxiao Xue, Xiaoping Zheng, Bingkun Zhou. Soliton regulation in microcavities induced by fundamental–second-harmonic mode coupling[J]. Photonics Research, 2018, 6(10): 948
    Download Citation