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Microcomb generation with simultaneous χ �2� and χ �3� nonlinearities brings new possibilities for ultrabroadband
and potentially self-referenced integrated comb sources. However, the evolution of the intracavity field involving
multiple nonlinear processes shows complex dynamics that are still poorly understood. Here, we report on strong
soliton regulation induced by fundamental–second-harmonic (FD-SH) mode coupling. The formation of solitons
from chaos is extensively investigated based on coupled Lugiato–Lefever equations. The soliton generation shows
more deterministic behaviors in the presence of FD-SH mode interaction, which is in sharp contrast with the usual
cases where the soliton number and relative locations are stochastic. Deterministic single soliton transition, soliton
binding, and prohibition are observed, depending on the phase-matching condition and coupling coefficient be-
tween the fundamental and second-harmonic waves. Our finding provides important new insights into the soliton
dynamics in microcavities with simultaneous χ �2� and χ �3� nonlinearities and can be immediate guidance for
broadband soliton comb generation with such platforms. © 2018 Chinese Laser Press

OCIS codes: (190.5530) Pulse propagation and temporal solitons; (190.2620) Harmonic generation and mixing; (190.4380)

Nonlinear optics, four-wave mixing; (140.3945) Microcavities.
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1. INTRODUCTION

Microresonator-based optical frequency comb (microcomb) gen-
eration is promising to achieve highly compact, chip-scale inte-
grated broadband comb sources [1,2]. Many applications can
potentially benefit from this revolutionary technology, such as
high-speed optical communications [3–5], optical clocks [6,7],
dual-comb spectroscopy [8,9], fast detecting lidar [10,11], THz
generation [12], and microwave photonic signal generation and
processing [13–19]. Microcomb generation relies on the Kerr
effect, which is a χ�3� nonlinearity. Mode-locked comb states
are generally related to formation of cavity solitons due to
balanced interplay between dispersion and Kerr nonlinearity
[20,21]. Nevertheless, many microresonator platforms such as
SiN, AlN, AlGaAs, and diamond also possess a χ�2� nonlin-
earity [22–25]. (Although bulk amorphous SiN is generally con-
sidered having no χ�2� nonlinearity, SiN waveguides may due
to surface effects or silicon nanocrystals that form in the fabri-
cation process [26–28]). Kerr comb generation accompanied by
second-harmonic generation has been reported with such micro-
resonators [29,30]. Recently, microcomb generation through
simultaneous χ�2� and χ�3� nonlinearities is attracting increasing
attention [31–33] because it provides a novel way to extend
the comb spectral range and brings new possibilities of single-
resonator comb self-referencing, which might greatly facilitate

on-chip optical clocks [34]. Moreover, the evolution of the
optical fields involving coupled χ�2� and χ�3� nonlinearities shows
complex dynamics that are of major scientific interest.

Dissipative cavity solitons are of major interest in the field
of microcomb generation because they correspond to broadband
mode-locked comb states. Intense studies have been performed
to investigate the cavity soliton dynamics involving different
physical processes, such as Raman effect [35], spatial mode cou-
pling [36–39], and external seeding [40]. Nevertheless, the im-
pact of second-harmonic generation on the soliton dynamics has
been seldom explored and remains poorly understood. Here, we
report on strong soliton regulation induced by fundamental–
second-harmonic (FD–SH) mode coupling in microresonators
with simultaneous χ�2� and χ�3� nonlinearities. We show through
simulations based on coupled Lugiato–Lefever (L-L) equations
that deterministic single soliton transition and soliton binding
may be achieved depending on the phase-matching condition and
the coupling coefficient between the fundamental and second-
harmonic waves. We also find examples in which stable soliton
states are prohibited by strong FD-SH mode coupling. Our
results provide important new insights into the soliton dynamics
in microresonators with simultaneous χ�2� and χ�3� nonlinearities
and suggest that FD-SH mode coupling may be employed as a
new way for soliton manipulation in microresonators.
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2. THEORETICAL MODEL

The microcomb generation scheme we investigate is illustrated
in Fig. 1(a). A microresonator with simultaneous χ�2� and χ�3�

nonlinearities is pumped by a continuous-wave (cw) single fre-
quency laser. The microresonator has anomalous group velocity
dispersion in the fundamental wavelength range. In the cavity,
both fundamental and second-harmonic combs are generated.
Note that frequency comb generation here is attributed to Kerr
nonlinearity, other than the cascaded χ�2� process reported pre-
viously [41,42]. We numerically investigate the evolution of
the optical fields based on the following coupled mean-field
L-L equations [31]:
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Here, E1 and E2 are fundamental and second-harmonic am-
plitudes scaled such that jE1j2 and jE2j2 represent the optical
power; z is the propagation distance in the cavity; α1 and α2
are amplitude losses, including the intrinsic loss and the
coupling loss; δ1 � δ0∕L, where δ0 is round-trip phase detun-
ing between the pump laser and the cavity, given by δ0 �
�ω0 − ωp�tR ; ω0 and ωp are the angular frequencies of the

resonance and the pump laser, respectively; tR is the round-trip
time; L is the round-trip length; k 0 01 � d2kFD∕dω2jω�ωp

, k 0 02 �
d2kSH∕dω2jω�2ωp

are group velocity dispersions, where kFD
and kSH are wave vectors of the fundamental and second-
harmonic waves, respectively (note that the fundamental
and second-harmonic waves usually correspond to different
spatial or polarization modes); Δk � 2kFD�ωp� − kSH�2ωp�
is the wave vector mismatch; Δk 0 � dkSH∕dωjω�2ωp

−
dkFD∕dωjω�ωp

is the group velocity mismatch; γ1, γ2 are
the nonlinear coefficients of self-phase modulation; γ12, γ21
are the nonlinear coefficients of cross-phase modulation; κ is
the second-order coupling coefficient; E in is the pump ampli-
tude; and η1 �

ffiffiffiffiffi
θ1

p
∕L where θ1 is the power coupling

coefficient between the bus waveguide and the microcavity
for the fundamental wave.

It has been reported in Refs. [31,43] that the sideband mode
of the fundamental wave �ωp � NΔω�may be strongly coupled
to the sideband mode of the second-harmonic wave �2ωp �
NΔω� through sum and difference frequency generation
[illustrated in Fig. 1(b)], i.e., ωp � �ωp � NΔω� →
�2ωp � NΔω� and �2ωp � NΔω� − ωp → �ωp � NΔω�,
where N is the relative mode number, and Δω � 2πFSR.
We consider the case when the fundamental field is composed
of stable solitons in the cavity. To estimate the phase-matching
condition for the sum and difference frequency conversion, we
assume that the power of the second-harmonic wave is much
weaker than that of the fundamental wave, so that the soliton
state is barely affected by the FD-SH mode coupling. For stable
soliton states, the dispersion is exactly balanced by Kerr
nonlinearity. Therefore, the round-trip phase detuning for
all the fundamental modes is zero. Note that, for the pump
mode, the external pump injection should be taken into
account to yield the overall zero phase detuning [44]. The
round-trip phase mismatch for the sum frequency conversion
ωp � �ωp � NΔω� → �2ωp � NΔω� can then be written as

Δϕ � ϕSH�2ωp � NΔω� − ϕFD�ωp� − ϕFD�ωp � NΔω�

� −ΔkL� Δk 0LNΔω� k 0 02 L
2

�NΔω�2

� 2γ21hjE1j2iL − 2δ0, (3)

where ϕFD�ωp� � 0, ϕFD�ωp � NΔω� � 0 for the pump and
sideband modes of the fundamental soliton, and hjE1j2i
represents the mean power of the fundamental wave. Here,
we omit the self-phase modulation of the second-harmonic mode
because its power is assumed to be weak.

3. RESULTS AND DISCUSSION

Numerical simulations are performed to validate Eq. (3). We
use typical parameters for a SiN microring resonator as follows:
FSR � 200 GHz, L � 730 μm, α1 � 3.038 × 10−3 m−1,
α2 � 6.076 × 10−3 m−1, k 0 01 � −100 ps2∕km, k 0 02 �
200 ps2∕km, Δk 0 � 7.61×10−10 s ·m−1, γ1 � 0.8 m−1 ·W−1,
γ2 � 2.1 m−1 ·W−1, γ12 � 0.6 m−1 ·W−1, γ21 � 1.2 m−1 ·W−1,
η1 � 75.51 m−1, Pin � jE inj2 � 0.2 W, κ � 2 W−1∕2 ·m−1,
and δ0 � 0.03. The initial fundamental field in the cavity is
a single soliton given by [20]

(a)

(b)

Fig. 1. (a) Scheme of Kerr comb generation in a microcavity with
simultaneous χ�2� and χ�3� nonlinearities. (b) Illustration of mode cou-
pling between the fundamental and second-harmonic waves through
sum (SFG) and difference (DFG) frequency generation.
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The initial second-harmonic field is zero, i.e., E2jz�0 � 0.
Equations (1) and (2) are then integrated with the split-step
Fourier method until E1 and E2 reach stable states. We freely
tune the wave vector mismatch term (Δk) to achieve phase
matching for the fifth mode (i.e., N � 5). By setting
Eq. (3) to zero, the round-trip phase detuning induced by wave
vector mismatch (ΔkL) is calculated to be −3.544. We thus run
the simulations with ΔkL scanned in a small range around
−3.544. Figure 2(a) shows the power of the fifth second-
harmonic mode versus ΔkL. The peak position agrees with
the theoretical prediction quite well. Figure 2(b) shows the fun-
damental and second-harmonic spectra when ΔkL � −3.544
(i.e., nearly perfect phase matching). A strong peak at the fifth
second-harmonic mode can be clearly observed (>40 dB
higher than the other modes). Figure 2(c) shows the time-
domain waveforms. The second-harmonic wave shows as a step
clamped with the fundamental soliton. Figure 2(d) shows the
fundamental and second-harmonic spectra when ΔkL � −3.5
(i.e., not perfect phase matching). The power of the fifth sec-
ond-harmonic mode is much weaker (∼17 dB lower) than that
in Fig. 2(b). Figure 2(e) shows the time-domain waveforms in
this case.

We then investigate the impact of FD-SH mode coupling
on the soliton formation dynamics. For comparison, we first

run simulations by assuming no second-order nonlinearity
(i.e., κ � 0). In a traditional Kerr comb generation scheme,
the pump laser is tuned from a shorter wavelength to a longer
wavelength into the microresonator resonance. The intracavity
field goes through a chaotic state before solitons are formed.
Therefore, soliton transitions are usually stochastic, namely,
the number of solitons and their relative locations are random
from test to test [20]. In our simulations, the round-trip pump
detuning (δ0) is scanned from 0 to 0.055 with a small step of
0.0001. For each step, the coupled equations are integrated for
500 round trips. The simulation parameters are as mentioned
above. A total of 100 simulation tests are performed. The traces
of the intracavity power versus the pump detuning are overlaid
in Fig. 3(a). The intracavity field transits from chaos to sol-
itons when δ0 > 0.02. Discrete power steps corresponding to
a different number of solitons can be clearly observed. The oc-
currence count of two-, three-, and four-soliton transitions is
21, 73, and 6, respectively. No single soliton state is observed.
Figures 3(b)–3(d) show the overlaid comb spectra for two,
three, and four solitons. The spectral envelope changes ran-
domly from test to test, suggesting stochastic soliton locations
in the cavity. Note that the solitons may arrange themselves to
regular grids to form soliton crystals when the cavity is densely
occupied by solitons [45]. In our simulations, only sparse and
well-separated solitons are formed, and soliton crystallization is
thus not observed.

Next, we run the simulations with κ ≠ 0 and tune the
wave vector mismatch term (Δk) in Eq. (2). We find that
the soliton formation dynamics can be drastically changed by
the FD-SH mode coupling. Figures 4(a) and 4(b) show the
power transition traces for the fundamental and second-
harmonic waves when κ � 3 W−1∕2 ·m−1 and ΔkL � −3.515.
Again, a total of 100 simulation tests are performed.
Remarkably, in all the tests, the fundamental field determinis-
tically transits to a single soliton state. The absolute value of
phase mismatch calculated according to Eq. (3) is also plotted
in Fig. 4(a). Nearly perfect phase matching is achieved around

(a)

(b)

(c)

(d)

(e)

Fig. 2. (a) Fifth second-harmonic mode power and the absolute
phase mismatch (jΔϕj) versus ΔkL. The vertical dash line indicates
the calculated ΔkL for perfect phase matching. (b) Spectra and
(c) waveforms of the fundamental (FD) and second-harmonic (SH)
waves when ΔkL � −3.544 (perfect phase matching). (d) Spectra
and (e) waveforms when ΔkL � −3.5 (not perfect phase matching).

(a) (c)

(b) (d)

Fig. 3. Soliton transitions in a cavity with only third-order Kerr
nonlinearity (κ � 0). (a) Intracavity power versus pump detuning.
100 traces are overlaid. The number of traces corresponding to two,
three, and four solitons is 21, 73, and 6, respectively. (b)–(d) Overlaid
comb spectra for two, three, and four solitons.

950 Vol. 6, No. 10 / October 2018 / Photonics Research Research Article



δ0 ∼ 0.02. The formation of solitons is strongly affected by the
FD-SH interaction, resulting in deterministic single soliton
transition. Note that the phase mismatch for FD-SH mode
coupling is not constant and dynamically changes with the
pump detuning due to a direct contribution from the detuning
[see Eq. (3)] and the cross-phase modulation from the funda-
mental wave.

Deterministic single soliton generation assisted by spatial
mode coupling was reported recently and attributed to the
interaction between solitons and dispersive waves [38].
Interestingly, in our case of FD-SH mode coupling, the spectral
variation related to a dispersive wave may hardly be observed
from the soliton spectrum, which is plotted in Fig. 4(c)
(δ0 � 0.025). In Fig. 4(d), we show a zoom-in spectrum of
the comb lines around the pump. The signature induced by
FD-SH mode coupling now becomes distinguishable. The
power variation of the fifth mode is only 0.42 dB, and the phase
variation is 0.036 rad. Such weak perturbations are easily over-
looked in experiments. Therefore, simultaneously monitoring
both the fundamental and the second-harmonic spectra is
highly desired to reveal the mode coupling. The perturbations
of the fifth mode amplitude and phase correspond to back-
ground oscillations (i.e., dispersive wave), which may interact
with the solitons, as will be shown in the next section.

We find that the soliton transition is sensitive to the phase-
matching condition of FD-SH mode coupling. Figures 5(a)
and 5(b) show the power transition traces of the funda-
mental and second-harmonic waves when κ � 3 W−1∕2 ·m−1

and ΔkL � −3.505. Ninety-six tests transit to two solitons,
while only four tests transit to a single soliton. Figure 5(c)
shows the overlaid spectra of the two-soliton combs. In

sharp contrast to the case with no FD-SH mode coupling [see
Fig. 3(b)], the comb spectra here show two specific patterns.
The occurrence counts of Pattern 1 and Pattern 2 are 59
and 37, respectively. Figure 5(d) shows the time-domain wave-
forms for the two patterns. The time offset has been adjusted to
make one soliton aligned. The inset shows a zoom-in plot of the
background. It can be clearly observed that the solitons are
trapped by the oscillations induced by FD-SH mode coupling.
The perturbations to the fifth mode correspond to five oscil-
lating periods in the time domain, dividing the cavity round
trip to five slots. If we use 1 and 0 to represent whether or
not there is a soliton in each slot, the two patterns can then
be written as [10100] and [11000]. We attribute the soliton
binding here to a similar mechanism that is induced by spatial
mode coupling, higher-order dispersion, and external seed-
ing [46,47].

(a) (c)

(b) (d)

Fig. 4. Deterministic single soliton formation assisted by FD-SH
mode coupling when κ � 3 W−1∕2 ·m−1 and ΔkL � −3.515.
(a) Intracavity fundamental power versus pump detuning. 100 traces
are overlaid. The white dash line shows the absolute phase mismatch
calculated according to Eq. (3). The full vertical scale corresponds to
0 − 0.1 rad. (b) Intracavity second-harmonic power versus pump de-
tuning. (c) Spectra of the fundamental (FD) and second-harmonic
(SH) waves when δ0 � 0.025. (d) Zoom-in spectra of the fundamen-
tal comb lines around the pump, showing weak amplitude and phase
perturbations at the fifth mode (marked with a dashed circle). Circle
(°): κ � 0; triangle (Δ): κ � 3 W−1∕2 ·m−1.

(a) (c)

(b) (d)

Fig. 5. Soliton binding due to FD-SH mode coupling when κ �
3 W−1∕2 ·m−1 and ΔkL � −3.505. (a) Intracavity fundamental power
versus pump detuning. 100 traces are overlaid. The absolute phase
mismatch calculated according to Eq. (3) is also plotted as in
Fig. 4(a). (b) Intracavity second-harmonic power versus pump detun-
ing. (c) Overlaid spectra of the fundamental comb when δ0 � 0.045.
Two patterns can be observed. (d) Time-domain waveforms of the two
patterns, showing that the soliton is trapped by the oscillations in-
duced by FD-SH mode coupling. The time offset is adjusted such that
one soliton is aligned for the two patterns.

(a) (b)

Fig. 6. Soliton prohibition caused by strong FD-SH mode coupling
when κ � 6 W−1∕2 ·m−1 and ΔkL � −3.515. (a) Intracavity funda-
mental power versus pump detuning. 100 traces are overlaid. The
absolute phase mismatch calculated according to Eq. (3) is also plotted
as in Fig. 4(a). (b) Intracavity second-harmonic power versus pump
detuning.
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We also find cases when soliton formation is prohibited
by strong FD-SH interaction. Figure 6 shows the simulation
results when κ � 6 W−1∕2 ·m−1 and ΔkL � −3.515. All 100
simulations transit to a cw state from the chaotic state. No
stable solitons are observed. It has been reported that spatial
mode coupling can induce a similar behavior of soliton
prohibition [36]. In general, strong spatial mode coupling in-
duces deterioration of the soliton probability [39]. Our results
reveal an analogy between FD-SH coupling and spatial mode
coupling and suggest that FD-SH coupling should be carefully
optimized to facilitate soliton comb generation in microresona-
tors with simultaneous χ�2� and χ�3� nonlinearities.

4. SUMMARY

In summary, the impact of FD-SH mode coupling on soliton
dynamics has been investigated through extensive simulations
based on coupled L-L equations. The soliton formation is
strongly regulated by FD-SH mode coupling. Deterministic
single soliton transition, soliton binding, and prohibition
may be achieved, depending on the coupling coefficient and
the phase-matching condition. Our findings provide immedi-
ate guidance for soliton Kerr comb generation in microresona-
tors with simultaneous χ�2� and χ�3� nonlinearities. Note that,
in our simulations, we have freely tuned the FD-SH coupling
coefficient (κ) to investigate the different soliton generation
behaviors. Such coupling levels may be achieved in SiN because
SiN with strong χ�2� nonlinearity has been reported [27,28].
Even stronger χ�2� may be obtained with other materials
[24,32,48]. In experiments, more methods besides material en-
gineering can be employed to control the FD-SH coupling,
such as tailoring the waveguide dimensions and the microreso-
nator shape.

For simplicity, Raman effect and higher-order dispersion are
not considered in our current simulations. It has been known
that the Raman effect and high-order dispersion may cause sol-
iton self-frequency shift and spectral recoil [35,37]. Both are
expected to interact with FD-SH mode coupling and modify
the phase-matching condition. Another effect that is not con-
sidered is the thermo-optic effect, which may also affect FD-SH
phase matching if the thermo-optic coefficients are different in
the fundamental and second-harmonic wavelength ranges. An
advanced model including the higher-order effects will be
worth investigating in the future.

Funding. National Natural Science Foundation of China
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