• Chinese Journal of Lasers
  • Vol. 48, Issue 24, 2403001 (2021)
Naling Zhang1、2, Hongqi Jing1、*, Qinghe Yuan1、2, Li Zhong1, Suping Liu1, and Xiaoyu Ma1、2
Author Affiliations
  • 1National Engineering Research Center for Optoelectronic Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL202148.2403001 Cite this Article Set citation alerts
    Naling Zhang, Hongqi Jing, Qinghe Yuan, Li Zhong, Suping Liu, Xiaoyu Ma. Influence of Diffusion Barriers with Different Al Compositions on Impurity-Free Vacancy Induced Quantum Well Mixing[J]. Chinese Journal of Lasers, 2021, 48(24): 2403001 Copy Citation Text show less
    References

    [1] Ge X H, Zhang R Y, Guo C Y et al. Multiple factor ion implantation-induced quantum well intermixing effect[J]. Laser & Optoelectronics Progress, 57, 011409(2020).

    [2] Younis U, Holmes B M, Hutchings D C. Characterization and optimization of ion implantation for high spatial resolution quantum well intermixing in GaAs/AlGaAs superlattices[J]. The European Physical Journal Applied Physics, 66, 10101(2014).

    [3] Yin T, Letal G J, Robinson B J et al. The effects of InP grown by He-plasma assisted epitaxy on quantum-well intermixing[J]. IEEE Journal of Quantum Electronics, 37, 426-429(2001).

    [4] Ohno T, Takiguchi M, Wakabayashi K et al. Characteristics of red-emitting broad area stripe laser diodes with zinc diffused window structures[J]. Proceedings of SPIE, 7583, 75830W(2010).

    [5] Taniguchi H, Ishii H, Minato R et al. 25-W 915-nm lasers with window structure fabricated by impurity-free vacancy disordering (IFVD)[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 1176-1179(2007).

    [6] Lin T, Sun H, Zhang H Q et al. Present status of impurity free vacancy disordering research and application[J]. Laser & Optoelectronics Progress, 52, 030003(2015).

    [7] Hsieh K Y, Hwang Y L, Lee J H et al. Enhanced/suppressed interdiffusion of InGaAs-GaAs-AlGaAs strained layers by controlling impurities and gallium vacancies[J]. Journal of Electronic Materials, 19, 1417-1423(1990).

    [8] Schlesinger T E, Kuech T. Determination of the interdiffusion of Al and Ga in undoped (Al, Ga)As/GaAs quantum wells[J]. Applied Physics Letters, 49, 519-521(1986).

    [9] Gontijo I, Krauss T, Marsh J H et al. Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion[J]. IEEE Journal of Quantum Electronics, 30, 1189-1195(1994).

    [10] Deppe D G, Guido L J, Holonyak N Jr et al. Stripe-geometry quantum well heterostructure AlxGa1-xAs-GaAs lasers defined by defect diffusion[J]. Applied Physics Letters, 49, 510-512(1986).

    [11] Hulko O, Thompson D A, Simmons J G. Quantitative compositional profiles of enhanced intermixing in GaAs/AlGaAs quantum well heterostructures annealed with and without a SiO2 cap layer[J]. Semiconductor Science and Technology, 24, 045015(2009).

    [12] O’Brien S, Shealy J R, Bour D P et al. Effects of rapid thermal annealing and SiO2 encapsulation on GaInAs/AlInAs heterostructures[J]. Applied Physics Letters, 56, 1365-1367(1990).

    [13] Han D J, Niu J S, Zhu H L et al. Impurity-free vacancy diffusion technique for InGaAsP/InP multiple quantum well laser structure[J]. Chinese Physics Letters, 18, 100-102(2001).

    [14] Du S C, Fu L, Tan H H et al. Investigations of impurity-free vacancy disordering in (Al)InGaAs(P)/InGaAs quantum wells[J]. Semiconductor Science and Technology, 25, 055014(2010).

    [15] An Y P, Yang H, Mei T et al. Cap layer influence on impurity-free vacancy disordering of InGaAs/InP quantum well structure[J]. Chinese Physics Letters, 27, 017302(2010).

    [16] Wang X, Zhao Y H, Zhu L N et al. Impurity-free vacancy diffusion induces quantum well intermixing in 915 nm semiconductor laser based on SiO2 film[J]. Acta Photonica Sinica, 47, 0314003(2018).

    [17] Naito H, Nagakura T, Torii K et al. Long-term reliability of 915-nm broad-area laser diodes under 20-W CW operation[J]. IEEE Photonics Technology Letters, 27, 1660-1662(2015).

    [18] Morita T, Nagakura T, Torii K et al. High-efficient and reliable broad-area laser diodes with a window structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1502104(2013).

    [19] Zhou L, Gao X, Xu L Y et al. InGaAs/GaAsP/GaInP quantum well lasers with window structure fabricated by impurity free vacancy disordering[J]. Solid-State Electronics, 89, 81-84(2013).

    [20] Zhou L. Research on anti catastrophic optical damage of high power semiconductor laser diodes[D], 27-28(2014).

    [21] Zhang J Y. Design and fabrication of current non-injection, transparent non-absorptive window for 9XX nm devices[D], 26(2019).

    [22] Oh Y T, Kang T W, Hong C Y et al. The relation between Ga vacancy concentrations and diffusion lengths in intermixed GaAs/Al0.35Ga0.65As multiple quantum wells[J]. Solid State Communications, 96, 241-244(1995).

    [23] Yu X H, Ge Z H, Chang B K et al. Electronic structure of Zn doped Ga0.5Al0.5As photocathodes from first-principles[J]. Solid State Communications, 164, 50-53(2013).

    [24] Gao S L, Yang Q, Chen S P et al. Periodic table of chemical elements[M]. 4th ed(2016).

    Naling Zhang, Hongqi Jing, Qinghe Yuan, Li Zhong, Suping Liu, Xiaoyu Ma. Influence of Diffusion Barriers with Different Al Compositions on Impurity-Free Vacancy Induced Quantum Well Mixing[J]. Chinese Journal of Lasers, 2021, 48(24): 2403001
    Download Citation