• Photonics Research
  • Vol. 10, Issue 12, 2768 (2022)
Wenkai Yang1、2、†, Lige Liu1、2、†, Dashan Dong1、2, Xin Zhang3, Han Lin4, Yunkun Wang1、2, Hong Yang1、2, Yunan Gao1、2, Haizheng Zhong3, Baohua Jia4, and Kebin Shi1、2、5、*
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 3MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Sciences and Engineering, Beijing Institute of Technology, Beijing 100081, China
  • 4School of Science, RMIT University, Melbourne 3000, VIC, Australia
  • 5Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
  • show less
    DOI: 10.1364/PRJ.472321 Cite this Article Set citation alerts
    Wenkai Yang, Lige Liu, Dashan Dong, Xin Zhang, Han Lin, Yunkun Wang, Hong Yang, Yunan Gao, Haizheng Zhong, Baohua Jia, Kebin Shi. Detour-phased perovskite ultrathin planar lens using direct femtosecond laser writing[J]. Photonics Research, 2022, 10(12): 2768 Copy Citation Text show less
    References

    [1] A. B. Stilgoe, T. A. Nieminen, H. Rubinsztein-Dunlop. Controlled transfer of transverse orbital angular momentum to optically trapped birefringent microparticles. Nat. Photonics, 16, 346-351(2022).

    [2] D. S. Dong, X. S. Huang, L. J. Li, H. Mao, Y. Q. Mo, G. Y. Zhang, Z. Zhang, J. Y. Shen, W. Liu, Z. M. Wu, G. H. Liu, Y. M. Liu, H. Yang, Q. H. Gong, K. B. Shi, L. Y. Chen. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. Light Sci. Appl., 9, 11(2020).

    [3] H. Jeon, S. Kim, S. Park, I. Jeong, J. Kang, Y. R. Kim, D. Y. Lee, E. Chung. Optical assessment of tear glucose by smart biosensor based on nanoparticle embedded contact lens. Nano Lett., 21, 8933-8940(2021).

    [4] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [5] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [6] E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, N. I. Zheludev. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater., 11, 432-435(2012).

    [7] G. H. Yuan, E. T. F. Rogers, N. I. Zheludev. Achromatic super-oscillatory lenses with sub-wavelength focusing. Light Sci. Appl., 6, e17036(2017).

    [8] F. Qin, K. Huang, J. F. Wu, J. H. Teng, C. W. Qiu, M. H. Hong. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater., 29, 1602721(2017).

    [9] X. R. Zheng, B. H. Jia, H. Lin, L. Qiu, D. Li, M. Gu. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun., 6, 8433(2015).

    [10] S. B. Wei, G. Y. Cao, H. Lin, X. C. Yuan, M. Somekh, B. H. Jia. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano, 15, 4769-4776(2021).

    [11] K. Huang, F. Qin, H. Liu, H. Ye, C. W. Qiu, M. H. Hong, B. Luk’yanchuk, J. H. Teng. Planar diffractive lenses: fundamentals, functionalities, and applications. Adv. Mater., 30, 1704556(2018).

    [12] J. Engelberg, U. Levy. The advantages of metalenses over diffractive lenses. Nat. Commun., 11, 1991(2020).

    [13] S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, R. Menon. Imaging with flat optics: metalenses or diffractive lenses?. Optica, 6, 805-810(2019).

    [14] M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, W. Pernice. Hybrid 2D-3D optical devices for integrated optics by direct laser writing. Light Sci. Appl., 3, e175(2014).

    [15] T. Gissibl, S. Thiele, A. Herkommer, H. Giessen. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics, 10, 554-560(2016).

    [16] X. L. Xu, A. Broussier, T. Ritacco, M. Nahra, F. Geoffray, A. Issa, S. Jradi, R. Bachelot, C. Couteau, S. Blaize. Towards the integration of nanoemitters by direct laser writing on optical glass waveguides. Photon. Res., 8, 1541-1550(2020).

    [17] C. R. Ocier, C. A. Richards, D. A. Bacon-Brown, Q. Ding, R. Kumar, T. J. Garcia, J. van de Groep, J.-H. Song, A. J. Cyphersmith, A. Rhode, A. N. Perry, A. J. Littlefield, J. Zhu, D. Xie, H. Gao, J. F. Messinger, M. L. Brongersma, K. C. Toussaint Jr., L. L. Goddard, P. V. Braun. Direct laser writing of volumetric gradient index lenses and waveguides. Light Sci. Appl., 9, 196(2020).

    [18] G. Y. Cao, H. Lin, S. Fraser, X. R. Zheng, B. D. Rosal, Z. X. Gan, S. B. Wei, X. S. Gan, B. H. Jia. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments. ACS Appl. Mater. Interfaces, 11, 20298-20303(2019).

    [19] H. Lin, Z. Q. Xu, G. Y. Cao, Y. P. Zhang, J. D. Zhou, Z. Y. Wang, Z. C. Wan, Z. Liu, K. P. Loh, C. W. Qiu, Q. L. Bao, B. H. Jia. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light Sci. Appl., 9, 137(2020).

    [20] A. Dey, J. Z. Ye, A. De. State of the art and prospects for halide perovskite nanocrystals. ACS Nano, 15, 10775-10981(2021).

    [21] S. Chang, Z. Bai, H. Z. Zhong. In situ fabricated perovskite nanocrystals: a revolution in optical materials. Adv. Opt. Mater., 6, 1800380(2018).

    [22] A. Y. Zhizhchenko, P. Tonkaev, D. Gets, A. Larin, D. Zuev, S. Starikov, E. V. Pustovalov, A. M. Zakharenko, S. A. Kulinich, S. Juodkazis, A. A. Kuchmizhak, S. V. Makarov. Light-emitting nanophotonic designs enabled by ultrafast laser processing of halide perovskites. Small, 16, 2000410(2020).

    [23] A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Superior thermal conductivity of single-layer grapheme. Nano Lett., 8, 902-907(2008).

    [24] I. Shishkin, A. Polushkin, E. Tiguntseva, A. Murzin, B. Stroganov, Y. Kapitonov, S. A. Kulinich, A. Kuchmizhak, S. Makarov. Single-step direct laser writing of halide perovskite microlasers. Appl. Phys. Express, 12, 122001(2019).

    [25] C. H. Zhou, G. Y. Cao, Z. X. Gan, Q. D. Ou, W. J. Chen, Q. L. Bao, B. H. Jia, X. M. Wen. Spatially modulating the fluorescence color of mixed-halide perovskite nanoplatelets through direct femtosecond laser writing. ACS Appl. Mater. Interfaces, 11, 26017-26023(2019).

    [26] Z. Y. Wang, T. S. Yang, Y. P. Zhang, Q. D. Ou, H. Lin, Q. H. Zhang, H. Y. Chen, H. Y. Hoh, B. H. Jia, Q. L. Bao. Flat lenses based on 2D perovskite nanosheets. Adv. Mater., 32, 2001388(2020).

    [27] K. Sun, D. Z. Tan, X. Y. Fang, X. T. Xia, D. J. Lin, J. Song, Y. H. Lin, Z. J. Liu, M. Gu, Y. Z. Yue, J. R. Qiu. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science, 375, 307-310(2022).

    [28] S. Draguta, O. Sharia, S. J. Yoon, M. C. Brennan, Y. V. Morozov, J. S. Manser, P. V. Kamat, W. F. Schneider, M. Kuno. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites. Nat. Commun., 8, 200(2017).

    [29] A. F. Gualdrón-Reyes, S. J. Yoon, E. M. Barea, S. Agouram, V. Muñoz-Sanjosé, Á. M. Meléndez, M. E. Niño-Gómez, I. Mora-Seró. Controlling the phase segregation in mixed halide perovskites through nanocrystal size. ACS Energy Lett., 4, 54-62(2018).

    [30] B. R. Brown, A. W. Lohmann. Complex spatial filtering with binary masks. Appl. Opt., 5, 967-969(1966).

    [31] A. W. Lohmann, D. P. Paris. Binary Fraunhofer holograms, generated by computer. Appl. Opt., 6, 1739-1748(1967).

    [32] W. H. Lee. Binary computer-generated holograms. Appl. Opt., 18, 3661-3669(1979).

    [33] C. K. Hsueh, A. A. Sawchuk. Computer-generated double-phase holograms. Appl. Opt., 17, 3874-3883(1978).

    [34] M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, D. Capasso. Broadband and chiral binary dielectric meta-holograms. Sci. Adv., 2, e1501258(2016).

    [35] C. J. Min, J. P. Liu, T. Lei, G. Y. Si, Z. W. Xie, J. Lin, L. P. Du, X. C. Yuan. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photon. Rev., 10, 978-985(2016).

    [36] Z. L. Deng, M. K. Jin, X. Ye, S. Wang, T. Shi, J. H. Deng, N. B. Mao, Y. Y. Cao, B. O. Guan, A. Alù, G. X. Li, X. P. Li. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv. Funct. Mater., 30, 1910610(2020).

    [37] P. C. Chen, C. W. Wang, D. Z. Wei, Y. Y. Hu, X. Y. Xu, J. W. Li, D. Wu, J. N. Ma, S. Y. Ji, L. R. Zhang, L. Q. Xu, T. X. Wang, C. Xu, J. R. Chu, S. N. Zhu, M. Xiao, Y. Zhang. Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal. Light Sci. Appl., 10, 146(2021).

    [38] B. X. Wang, X. M. Hong, K. Wang, X. Chen, S. Liu, W. Krolikowski, P. X. Lu, Y. Sheng. Nonlinear detour phase holography. Nanoscale, 13, 2693-2702(2021).

    [39] A. Zhao, A. Pham, A. Drezet. Plasmonic fork-shaped hologram for vortex-beam generation and separation. Opt. Lett., 46, 689-692(2021).

    [40] K. Zhang, Y. X. Wang, S. N. Burokur, Q. Wu. Generating dual-polarized vortex beam by detour phase: from phase gradient metasurfaces to metagratings. IEEE Trans. Microw. Theory Tech., 70, 200-209(2021).

    [41] S. B. Wei, G. Y. Cao, H. Lin, H. R. Mu, W. B. Liu, X. C. Yuan, M. Somekh, B. H. Jia. High tolerance detour-phase graphene-oxide flat lens. Photon. Res., 9, 2454-2463(2021).

    [42] J. Albero, J. A. Davis, D. M. Cottrell, C. E. Granger, K. R. McCormick, I. Moreno. Generalized diffractive optical elements with asymmetric harmonic response and phase control. Appl. Opt., 52, 3637-3644(2013).

    [43] M. Gu. Advanced Optical Imaging Theory(2000).

    [44] A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, A. Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays. Nat. Commun., 6, 7069(2015).

    [45] X. Zhang, D. B. Han, C. H. Wang, I. Muhammad, F. Zhang, A. Shmshad, X. L. Xue, W. Y. Ji, S. Chang, H. Z. Zhong. Highly efficient light emitting diodes based on in situ fabricated FAPbI3 nanocrystals: solvent effects of on-chip crystallization. Adv. Opt. Mater., 7, 1900774(2019).

    [46] J. A. Steele, H. F. Yuan, C. Y. X. Tan, M. Keshavarz, C. Steuwe, M. B. J. Roeffaers, J. Hofkens. Direct laser writing of δ- to α-phase transformation in formamidinium lead iodide. ACS Nano, 11, 8072-8083(2017).

    [47] S. Ruan, D. P. McMeekin, R. Fan, N. A. S. Webster, H. Ebendorff-Heidepriem, Y. B. Cheng, J. F. Lu, Y. L. Ruan, C. R. McNeill. Raman spectroscopy of formamidinium-based lead halide perovskite single crystals. J. Phys. Chem. C, 124, 2265-2272(2020).

    [48] W. K. Yang, L. G. Liu, D. S. Dong, Y. N. Gao, H. Yang, Q. H. Gong, K. B. Shi. In situ three-dimensional observation of perovskite crystallization revealed by two-photon fluorescence imaging. Adv. Opt. Mater., 10, 2200089(2022).

    [49] Z. T. Wang, R. Fu, F. Li, H. D. Xie, P. W. He, Q. Sha, Z. B. Tang, N. Wang, H. Z. Zhong. One-step polymeric melt encapsulation method to prepare CsPbBr3 perovskite quantum dots/polymethyl methacrylate composite with high performance. Adv. Funct. Mater., 31, 2010009(2021).

    Wenkai Yang, Lige Liu, Dashan Dong, Xin Zhang, Han Lin, Yunkun Wang, Hong Yang, Yunan Gao, Haizheng Zhong, Baohua Jia, Kebin Shi. Detour-phased perovskite ultrathin planar lens using direct femtosecond laser writing[J]. Photonics Research, 2022, 10(12): 2768
    Download Citation