• Journal of Semiconductors
  • Vol. 44, Issue 2, 023101 (2023)
Yingqi Liang*, Guobin Mao*, Junbiao Dai*, and Yingxin Ma**
Author Affiliations
  • CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
  • show less
    DOI: 10.1088/1674-4926/44/2/023101 Cite this Article
    Yingqi Liang, Guobin Mao, Junbiao Dai, Yingxin Ma. Biofunctionalized semiconductor quantum dots for virus detection[J]. Journal of Semiconductors, 2023, 44(2): 023101 Copy Citation Text show less
    References

    [1] Y A Kim, T M Przytycka. The language of a virus. Science, 371, 233(2021).

    [2] S Mukherjee et al. Before virus, after virus: A reckoning. Cell, 183, 308(2020).

    [3] J Castilla, P Saá, C Soto. Detection of prions in blood. Nat Med, 11, 982(2005).

    [4] P Kukura, H Ewers, C Müller et al. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat Methods, 6, 923(2009).

    [5] M Xiao, F Tian, X Liu et al. Virus detection: From state-of-the-art laboratories to smartphone-based point-of-care testing. Adv Sci, 9, e2105904(2022).

    [6] S Hassanpour et al. Recent trends in rapid detection of influenza infections by bio and nanobiosensor. Trac Trends Anal Chem, 98, 201(2018).

    [7] W J Wiersinga, H C Prescott. What is COVID-19?. JAMA, 324, 816(2020).

    [8] N J Matheson, P J Lehner. How does SARS-CoV-2 cause COVID-19?.. Science, 369, 510(2020).

    [9] J Q Deng, S Zhao, Y Liu et al. Nanosensors for diagnosis of infectious diseases. ACS Appl Bio Mater, 4, 3863(2021).

    [10] J Abbasi. Combining rapid PCR and antibody tests improved COVID-19 diagnosis. JAMA, 324, 1386(2020).

    [11] K Deshpande, U Pt, O Kaduskar et al. Performance assessment of seven SARS-CoV-2 IgG enzyme-linked immunosorbent assays. J Med Virol, 93, 6696(2021).

    [12] R Krajewski et al. Update on serologic testing in COVID-19. Clin Chimica Acta, 510, 746(2020).

    [13] M L Song et al. Pathogenic virus detection by optical nanobiosensors. Cell Rep Phys Sci, 2, 100288(2021).

    [14] M Abdolhosseini et al. A review on colorimetric assays for DNA virus detection. J Virol Methods, 301, 114461(2022).

    [15] M Nasrollahzadeh, M Sajjadi, G J Soufi et al. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials, 10, 1072(2020).

    [16] B B Lou, Y F Liu, M L Shi et al. Aptamer-based biosensors for virus protein detection. Trac Trends Anal Chem, 157, 116738(2022).

    [17] Ž Jelen, P Majerič, M Zadravec et al. Study of gold nanoparticles’ preparation through ultrasonic spray pyrolysis and lyophilisation for possible use as markers in LFIA tests. Nanotechnol Rev, 10, 1978(2021).

    [18] J P Tian, H M Zhao, M Liu et al. Detection of influenza A virus based on fluorescence resonance energy transfer from quantum dots to carbon nanotubes. Anal Chimica Acta, 723, 83(2012).

    [19] C W Wang, C G Wang, X L Wang et al. Magnetic SERS strip for sensitive and simultaneous detection of respiratory viruses. ACS Appl Mater Interfaces, 11, 19495(2019).

    [20] J Lee, S R Ahmed, S Oh et al. A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus. Biosens Bioelectron, 64, 311(2015).

    [21] W D Zhou, J J Coleman. Semiconductor quantum dots. Curr Opin Solid State Mater Sci, 20, 352(2016).

    [22] de Arquer F P García, D V Talapin, V I Klimov et al. Semiconductor quantum dots: Technological progress and future challenges. Science, 373, eaaz8541(2021).

    [23] L J Zhang, L Xia, H Y Xie et al. Quantum dot based biotracking and biodetection. Anal Chem, 91, 532(2019).

    [24] G V Lisichkin, A Y Olenin. Synthesis of surface-modified quantum dots. Russ Chem Bull, 69, 1819(2020).

    [25] X H Chang, J Zhang, L H Wu et al. Research progress of near-infrared fluorescence immunoassay. Micromachines, 10, 422(2019).

    [26] M Pastucha, Z Farka, K Lacina et al. Magnetic nanoparticles for smart electrochemical immunoassays: A review on recent developments. Mikrochim Acta, 186, 312(2019).

    [27] M Stanisavljevic, S Krizkova, M Vaculovicova et al. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens Bioelectron, 74, 562(2015).

    [28] Q Zhao, D Lu, G Y Zhang et al. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta, 223, 121722(2021).

    [29] A M Wagner, J M Knipe, G Orive et al. Quantum dots in biomedical applications. Acta Biomater, 94, 44(2019).

    [30] J Zhou, Y Yang, C Y Zhang. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem Rev, 115, 11669(2015).

    [31] R Gill, M Zayats, I Willner. Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed, 47, 7602(2008).

    [32] P Reiss, M Carrière, C Lincheneau et al. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem Rev, 116, 10731(2016).

    [33] D Zhao, Z K He, W H Chan et al. Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped byN-acetyl-l-cysteine via hydrothermal method. J Phys Chem C, 113, 1293(2009).

    [34] J B Blanco-Canosa, M Wu, K Susumu et al. Recent progress in the bioconjugation of quantum dots. Coord Chem Rev, 263/264, 101(2014).

    [35] A M Salaheldin, J Walter, P Herre et al. Automated synthesis of quantum dot nanocrystals by hot injection: Mixing induced self-focusing. Chem Eng J, 320, 232(2017).

    [36] J Y Park, D W Jeong, K M Lim et al. Multimodal luminescence properties of surface-treated ZnSe quantum dots by Eu. Appl Surf Sci, 415, 8(2017).

    [37] W T Wang, A Kapur, X Ji et al. Photoligation of an amphiphilic polymer with mixed coordination provides compact and reactive quantum dots. J Am Chem Soc, 137, 5438(2015).

    [38] Z X Jiang, K Matras-Postolek, P Yang. Hydrophobic CdSe and CdTe quantum dots: Shell coating, shape control, and self-assembly. RSC Adv, 6, 25656(2016).

    [39] O Adegoke, M W Seo, T Kato et al. An ultrasensitive SiO2-encapsulated alloyed CdZnSeS quantum dot-molecular beacon nanobiosensor for norovirus. Biosens Bioelectron, 86, 135(2016).

    [40] N Q Zhan, G Palui, J P Merkl et al. Bio-orthogonal coupling as a means of quantifying the ligand density on hydrophilic quantum dots. J Am Chem Soc, 138, 3190(2016).

    [41] P Yang, M Ando, N Murase. Controlled self-assembly of hydrophobic quantum dots through silanization. J Colloid Interface Sci, 361, 9(2011).

    [42] Y He, H T Lu, L M Sai et al. Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility. Adv Mater, 20, 3416(2008).

    [43] N Gaponik, D V Talapin, A L Rogach et al. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J Phys Chem B, 106, 7177(2002).

    [44] M Y Mou, Y Wu, Q Q Niu et al. Aggregation-induced emission properties of hydrothermally synthesized Cu-In-S quantum dots. Chem Commun, 53, 3357(2017).

    [45] D Zhao, Y Fang, H Y Wang et al. Synthesis and characterization of high-quality water-soluble CdTe: Zn2+ quantum dots capped byN-acetyl-l-cysteineviahydrothermal method. J Mater Chem, 21, 13365(2011).

    [46] C L Zhang, J Yan, C Liu et al. One-pot synthesis of DNA-CdTe: Zn2+ nanocrystals using Na2TeO3 as the Te source. ACS Appl Mater Interfaces, 6, 3189(2014).

    [47] K Nekolla, K Kick, S Sellner et al. Influence of surface modifications on the spatiotemporal microdistribution of quantum dotsIn vivo. Small, 12, 2641(2016).

    [48] G B Mao, W Q Peng, S B Tian et al. Dual-protein visual detection using ratiometric fluorescent probe based on Rox-DNA functionalized CdZnTeS QDs. Sens Actuat B, 283, 755(2019).

    [49] Y X Ma, G B Mao, G Q Wu et al. A novel nano-beacon based on DNA functionalized QDs for intracellular telomerase activity monitoring. Sens Actuat B, 304, 127385(2020).

    [50] G B Mao, C Liu, M Y Du et al. One-pot synthesis of the stable CdZnTeS quantum dots for the rapid and sensitive detection of copper-activated enzyme. Talanta, 185, 123(2018).

    [51] G B Mao, Q Cai, F B Wang et al. One-step synthesis of rox-DNA functionalized CdZnTeS quantum dots for the visual detection of hydrogen peroxide and blood glucose. Anal Chem, 89, 11628(2017).

    [52] G B Mao, M Y Du, X X Wang et al. Simple construction of ratiometric fluorescent probe for the detection of dopamine and tyrosinase by the naked eye. Analyst, 143, 5295(2018).

    [53] N Q Zhan, G Palui, M Safi et al. Multidentate zwitterionic ligands provide compact and highly biocompatible quantum dots. J Am Chem Soc, 135, 13786(2013).

    [54] S H Bhang, N Won, T J Lee et al. Hyaluronic acid-quantum dot conjugates forin vivo lymphatic vessel imaging. ACS Nano, 3, 1389(2009).

    [55] T L Jennings, S G Becker-Catania, R C Triulzi et al. Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis. ACS Nano, 5, 5579(2011).

    [56] M Wang, J L Xie, J Li et al. 3-aminophenyl boronic acid functionalized quantum-dot-based ratiometric fluorescence sensor for the highly sensitive detection of tyrosinase activity. ACS Sens, 5, 1634(2020).

    [57] M Zhou, E Nakatani, L S Gronenberg et al. Peptide-labeled quantum dots for imaging GPCRs in whole cells and as single molecules. Bioconjug Chem, 18, 323(2007).

    [58] Z C Feng, R N Ma, A Du et al. Enhanced performance of near-infrared-absorption CdSeTe quantum dot-sensitized solar cells via octa-aminopropyl polyhedral oligomeric silsesquioxane modification. Nano, 14, 1950087(2019).

    [59] F Y Song, W C W Chan. Principles of conjugating quantum dots to proteins via carbodiimide chemistry. Nanotechnology, 22, 494006(2011).

    [60] C W Chi, Y H Lao, Y S Li et al. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: Application to label-free thrombin detection. Biosens Bioelectron, 26, 3346(2011).

    [61] C Schieber, A Bestetti, J P Lim et al. Conjugation of transferrin to azide-modified CdSe/ZnS core-shell quantum dots using cyclooctyne click chemistry. Angew Chem Int Ed, 51, 10523(2012).

    [62] G B Mao, Y X Ma, G Q Wu et al. Novel method of clickable quantum dot construction for bioorthogonal labeling. Anal Chem, 93, 777(2021).

    [63] A R Clapp, I L Medintz, J M Mauro et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc, 126, 301(2004).

    [64] C L Zhang, X H Ji, Y Zhang et al. One-pot synthesized aptamer-functionalized CdTe: Zn2+ quantum dots for tumor-targeted fluorescence imagingin vitro andin vivo. Anal Chem, 85, 5843(2013).

    [65] D Wu, G F Song, Z Li et al. A two-dimensional molecular beacon for mRNA-activated intelligent cancer theranostics. Chem Sci, 6, 3839(2015).

    [66] Y X Ma, G B Mao, W R Huang et al. Quantum dot nanobeacons for single RNA labeling and imaging. J Am Chem Soc, 141, 13454(2019).

    [67] M Z Shen et al. Recent advances and perspectives of nucleic acid detection for coronavirus. J Pharm Anal, 10, 97(2020).

    [68] L F Bustamante-Jaramillo, J Fingal, M L Blondot et al. Imaging of hepatitis B virus nucleic acids: Current advances and challenges. Viruses, 14, 557(2022).

    [69] L Castillo-Henríquez, M Brenes-Acuña, A Castro-Rojas et al. Biosensors for the detection of bacterial and viral clinical pathogens. Sensors, 20, 6926(2020).

    [70] A Lesiak, K Drzozga, J Cabaj et al. Optical sensors based on II-VI quantum dots. Nanomaterials, 9, 192(2019).

    [71] X X Jiang, X J Liu, M Wu et al. Facile off-on fluorescence biosensing of human papillomavirus using DNA probe coupled with sunflower seed shells carbon dots. Microchem J, 181, 107742(2022).

    [72] M Shamsipur, V Nasirian, K Mansouri et al. A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18. J Pharm Biomed Anal, 136, 140(2017).

    [73] J H Kim, S Chaudhary, M Ozkan. Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection. Nanotechnology, 18, 195105(2007).

    [74] A Samanta, Y D Zhou, S L Zou et al. Fluorescence quenching of quantum dots by gold nanoparticles: A potential long range spectroscopic ruler. Nano Lett, 14, 5052(2014).

    [75] O Adegoke, M Morita, T Kato et al. Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays. Biosens Bioelectron, 94, 513(2017).

    [76] A Dove. Technology Feature| PCR: Thirty-five years and counting. Science, 360, 673(2018).

    [77] Y X Wang, H Chen, H J Wei et al. Tetra-primer ARMS-PCR combined with dual-color fluorescent lateral flow assay for the discrimination of SARS-CoV-2 and its mutations with a handheld wireless reader. Lab Chip, 22, 1531(2022).

    [78] P Kumar, D Pandya, N Singh et al. Loop-mediated isothermal amplification assay for rapid and sensitive diagnosis of tuberculosis. J Infect, 69, 607(2014).

    [79] V L Fowler, D Armson, J L Gonzales et al. A highly effective reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 infection. J Infect, 82, 117(2021).

    [80] S Y Wang, A L Qin, L Y Chau et al. Amine-functionalized quantum dots as a universal fluorescent nanoprobe for a one-step loop-mediated isothermal amplification assay with single-copy sensitivity. ACS Appl Mater Interfaces, 14, 35299(2022).

    [81] J Y Dai, H F He, Z J Duan et al. Self-replicating catalyzed hairpin assembly for rapid signal amplification. Anal Chem, 89, 11971(2017).

    [82] Y F Li, J W Li, Y Cao et al. A visual method for determination of hepatitis C virus RNAs based on a 3D nanocomposite prepared from graphene quantum dots. Anal Chimica Acta, 1203, 339693(2022).

    [83] J Zhou, Q X Wang, C Y Zhang. Liposome-quantum dot complexes enable multiplexed detection of attomolar DNAs without target amplification. J Am Chem Soc, 135, 2056(2013).

    [84] H Y Cui, W Q Song, Z J Cao et al. Simultaneous and sensitive detection of dual DNA targets via quantum dot-assembled amplification labels. Luminescence, 31, 281(2016).

    [85] J J Wang, Y Liu, Z Ding et al. The exploration of quantum dot-molecular beacon based MoS2 fluorescence probing for myeloma-related Mirnas detection. Bioact Mater, 17, 360(2022).

    [86] J S Chen, E B Ma, L B Harrington et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360, 436(2018).

    [87] W H Zhou, L Hu, L M Ying et al. A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat Commun, 9, 5012(2018).

    [88] J J Wang, C S Zheng, Y Z Jiang et al. One-step monitoring of multiple enterovirus 71 infection-related microRNAs using core-satellite structure of magnetic nanobeads and multicolor quantum dots. Anal Chem, 92, 830(2020).

    [89] D D Kocak, C A Gersbach. From CRISPR scissors to virus sensors. Nature, 557, 168(2018).

    [90] M D Bao, E Jensen, Y Chang et al. Magnetic bead-quantum dot (MB-qdot) clustered regularly interspaced short palindromic repeat assay for simple viral DNA detection. ACS Appl Mater Interfaces, 12, 43435(2020).

    [91] Q Zhang, J H Li, Y Li et al. SARS-CoV-2 detection using quantum dot fluorescence immunochromatography combined with isothermal amplification and CRISPR/Cas13a. Biosens Bioelectron, 202, 113978(2022).

    [92] L Gao, Q F Yang, P Wu et al. Recent advances in nanomaterial-enhanced enzyme-linked immunosorbent assays. Analyst, 145, 4069(2020).

    [93] Y Liang, X L Huang, R J Yu et al. Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs. Anal Chimica Acta, 936, 195(2016).

    [94] Y Q Wu, L F Zeng, Y Xiong et al. Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B. Talanta, 181, 258(2018).

    [95] J J Zhou, M S Ren, W J Wang et al. Pomegranate-inspired silica nanotags enable sensitive dual-modal detection of rabies virus nucleoprotein. Anal Chem, 92, 8802(2020).

    [96] W W Zhao, Y M Han, Y C Zhu et al. DNA labeling generates a unique amplification probe for sensitive photoelectrochemical immunoassay of HIV-1 p24 antigen. Anal Chem, 87, 5496(2015).

    [97] A Jo, T H Kim, D M Kim et al. Sensitive detection of virus with broad dynamic range based on highly bright quantum dot-embedded nanoprobe and magnetic beads. J Ind Eng Chem, 90, 319(2020).

    [98] F Nasrin, A D Chowdhury, K Takemura et al. Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Biosens Bioelectron, 122, 16(2018).

    [99] S A Byrnes, T Huynh, T C Chang et al. Wash-free, digital immunoassay in polydisperse droplets. Anal Chem, 92, 3535(2020).

    [100] Z Wu, T Zeng, W J Guo et al. Digital single virus immunoassay for ultrasensitive multiplex avian influenza virus detection based on fluorescent magnetic multifunctional nanospheres. ACS Appl Mater Interfaces, 11, 5762(2019).

    [101] R Soleimani, C Deckers, T D Huang et al. Rapid COVID-19 antigenic tests: Usefulness of a modified method for diagnosis. J Med Virol, 93, 5655(2021).

    [102] C W Wang, X S Yang, S Zheng et al. Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza A virus. Sens Actuat B, 345, 130372(2021).

    [103] H Han, C W Wang, X S Yang et al. Rapid field determination of SARS-CoV-2 by a colorimetric and fluorescent dual-functional lateral flow immunoassay biosensor. Sens Actuat B, 351, 130897(2022).

    [104] L Chen, X W Zhang, C L Zhang et al. Dual-color fluorescence and homogeneous immunoassay for the determination of human enterovirus 71. Anal Chem, 83, 7316(2011).

    [105] L Chen, X W Zhang, G H Zhou et al. Simultaneous determination of human Enterovirus 71 and Coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay. Anal Chem, 84, 3200(2012).

    [106] X Y Zhang, Q Zhou, Z F Shen et al. Quantum dot incorporatedBacillus spore as nanosensor for viral infection. Biosens Bioelectron, 74, 575(2015).

    [107] Z Yao, L Drecun, F Aboualizadeh et al. A homogeneous split-luciferase assay for rapid and sensitive detection of anti-SARS CoV-2 antibodies. Nat Commun, 12, 1806(2021).

    [108] Y N Tang, T R Song, L Gao et al. A CRISPR-based ultrasensitive assay detects attomolar concentrations of SARS-CoV-2 antibodies in clinical samples. Nat Commun, 13, 4667(2022).

    Yingqi Liang, Guobin Mao, Junbiao Dai, Yingxin Ma. Biofunctionalized semiconductor quantum dots for virus detection[J]. Journal of Semiconductors, 2023, 44(2): 023101
    Download Citation