• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617010 (2022)
Hanming Dai, Xiaohong Ruan, Jinjun Shao*, and Xiaochen Dong**
Author Affiliations
  • Institute of Advanced Materials, Nanjing Tech University, Nanjing , Jiangsu 211816, China
  • show less
    DOI: 10.3788/LOP202259.0617010 Cite this Article Set citation alerts
    Hanming Dai, Xiaohong Ruan, Jinjun Shao, Xiaochen Dong. Activatable NIR-Ⅱ Small Molecules for Bioimaging[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617010 Copy Citation Text show less
    References

    [1] Dai H M, Wang X R, Shao J J et al. NIR-Ⅱ organic nanotheranostics for precision oncotherapy[J]. Small, 17, 2102646(2021).

    [2] Tang Y F, Pei F, Lu X M et al. Recent advances on activatable NIR-Ⅱ fluorescence probes for biomedical imaging[J]. Advanced Optical Materials, 7, 1900917(2019).

    [3] Chen J W, Gong H, Yuan J. Multispectral imaging technology and its applications in biomedicine[J]. Laser & Optoelectronics Progress, 58, 0400001(2021).

    [4] Li Y, Qiu J R. Persistently luminescent phosphors[J]. Laser & Optoelectronics Progress, 58, 1516002(2021).

    [5] Xu W H, Wang D, Tang B Z. NIR-Ⅱ AIEgens: a win-win integration towards bioapplications[J]. Angewandte Chemie International Edition, 60, 7476-7487(2021).

    [6] Lu L F, Li B H, Ding S W et al. NIR-Ⅱ bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing[J]. Nature Communications, 11, 4192(2020).

    [7] Wang S F, Li B H, Zhang F. Molecular fluorophores for deep-tissue bioimaging[J]. ACS Central Science, 6, 1302-1316(2020).

    [8] Li J C, Pu K Y. Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation[J]. Chemical Society Reviews, 48, 38-71(2019).

    [9] Hu Z H, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows[J]. Nature Biomedical Engineering, 4, 259-271(2020).

    [10] Li J, Liu Y, Xu Y L et al. Recent advances in the development of NIR-Ⅱ organic emitters for biomedicine[J]. Coordination Chemistry Reviews, 415, 213318(2020).

    [11] Miao Q Q, Pu K Y. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics[J]. Advanced Materials, 30, 1801778(2018).

    [12] Liu Y S, Li Y, Koo S et al. Versatile types of inorganic/organic NIR-Ⅱa/Ⅱb fluorophores: from strategic design toward molecular imaging and theranostics[J]. Chemical Reviews, 553(2021).

    [13] Zhu S, Yung B C, Chandra S et al. Near-infrared-II (NIR-Ⅱ) bioimaging via off-peak NIR-I fluorescence emission[J]. Theranostics, 8, 4141-4151(2018).

    [14] Cao J, Zhu B L, Zheng K F et al. Recent progress in NIR-Ⅱ contrast agent for biological imaging[J]. Frontiers in Bioengineering and Biotechnology, 7, 487(2019).

    [15] Cai Y, Si W L, Huang W et al. Organic dye based nanoparticles for cancer phototheranostics[J]. Small, 14, e1704247(2018).

    [16] Chen D P, Yu Q, Huang X et al. A highly-efficient type I photosensitizer with robust vascular-disruption activity for hypoxic-and-metastatic tumor specific photodynamic therapy[J]. Small, 16, e2001059(2020).

    [17] Dai H M, Shen Q, Shao J J et al. Small molecular NIR-Ⅱ fluorophores for cancer phototheranostics[J]. The Innovation, 2, 100082(2021).

    [18] Su Y B, Yu B, Wang S et al. NIR-Ⅱ bioimaging of small organic molecule[J]. Biomaterials, 271, 120717(2021).

    [19] Zhou H, Xiao Y L, Hong X C. New NIR-Ⅱ dyes without a benzobisthiadiazole core[J]. Chinese Chemical Letters, 29, 1425-1428(2018).

    [20] Tu L, Xu Y L, Ouyang Q Y et al. Recent advances on small-molecule fluorophores with emission beyond 1000 nm for better molecular imaging in vivo[J]. Chinese Chemical Letters, 30, 1731-1737(2019).

    [21] Antaris A L, Chen H, Cheng K et al. A small-molecule dye for NIR-Ⅱ imaging[J]. Nature Materials, 15, 235-242(2016).

    [22] Zhang X, An L, Tian Q W et al. Tumor microenvironment-activated NIR-Ⅱ reagents for tumor imaging and therapy[J]. Journal of Materials Chemistry B, 8, 4738-4747(2020).

    [23] Bai H R, Peng R Z, Wang D et al. A minireview on multiparameter-activated nanodevices for cancer imaging and therapy[J]. Nanoscale, 12, 21571-21582(2020).

    [24] Yao Y K, Zhang Y T, Yan C X et al. Enzyme-activatable fluorescent probes for β-galactosidase: from design to biological applications[J]. Chemical Science, 12, 9885-9894(2021).

    [25] Zhao M Y, Li B H, Zhang H X et al. Activatable fluorescence sensors for in vivo bio-detection in the second near-infrared window[J]. Chemical Science, 12, 3448-3459(2020).

    [26] Ding F, Feng J, Zhang X L et al. Responsive optical probes for deep-tissue imaging: photoacoustics and second near-infrared fluorescence[J]. Advanced Drug Delivery Reviews, 173, 141-163(2021).

    [27] Huang J G, Pu K Y. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging[J]. Angewandte Chemie International Edition, 59, 11717-11731(2020).

    [28] Zeng Z, Liew S S, Wei X et al. Hemicyanine-based near-infrared activatable probes for imaging and diagnosis of diseases[J]. Angewandte Chemie International Edition, 60, 26454-26475(2021).

    [29] Ferreira C A, Ni D L, Rosenkrans Z T et al. Scavenging of reactive oxygen and nitrogen species with nanomaterials[J]. Nano Research, 11, 4955-4984(2018).

    [30] Liu J, Ma L J, Zhang G Y et al. Recent progress of surface modified nanomaterials for scavenging reactive oxygen species in organism[J]. Bioconjugate Chemistry, 32, 2269-2289(2021).

    [31] Han G, Gao J J, Tu M R et al. Effect of photobiomodulation mediated by 808 nm laser on active oxygen steady-state in CCC-ESFs under high glucose environment[J]. Laser & Optoelectronics Progress, 58, 0917001(2021).

    [32] Feng W Q, Zhang Y Y, Li Z et al. Lighting up NIR-Ⅱ fluorescence in vivo: an activable probe for noninvasive hydroxyl radical imaging[J]. Analytical Chemistry, 91, 15757-15762(2019).

    [33] Pai M, Behr M A, Dowdy D et al. Tuberculosis[J]. Nature Reviews. Disease Primers, 2, 16076(2016).

    [34] Chen L Q, Chen J J, Fang Y C et al. A turn-on probe for detecting antituberculotic drug-induced liver injury in mice via NIR-Ⅱ fluorescence/optoacoustic imaging[J]. Chemical Communications, 57, 7842-7845(2021).

    [35] He X J, Chen H, Xu C C et al. Ratiometric and colorimetric fluorescent probe for hypochlorite monitor and application for bioimaging in living cells, bacteria and zebrafish[J]. Journal of Hazardous Materials, 388, 122029(2020).

    [36] Yin C, Zhen X, Fan Q L et al. Degradable semiconducting oligomer amphiphile for ratiometric photoacoustic imaging of hypochlorite[J]. ACS Nano, 11, 4174-4182(2017).

    [37] Tang Y F, Li Y Y, Lu X M et al. Bio-erasable intermolecular donor-acceptor interaction of organic semiconducting nanoprobes for activatable NIR-Ⅱ fluorescence imaging[J]. Advanced Functional Materials, 29, 1807376(2019).

    [38] Ge X G, Lou Y H, Su L C et al. Single wavelength laser excitation ratiometric NIR-Ⅱ fluorescent probe for molecule imaging in vivo[J]. Analytical Chemistry, 92, 6111-6120(2020).

    [39] Tang Y F, Li Y Y, Wang Z et al. Organic semiconducting nanoprobe with redox-activatable NIR-Ⅱ fluorescence for in vivo real-time monitoring of drug toxicity[J]. Chemical Communications, 55, 27-30(2018).

    [40] Sun L H, Ouyang J, Ma Y Q et al. An activatable probe with aggregation-induced emission for detecting and imaging herbal medicine induced liver injury with optoacoustic imaging and NIR-Ⅱ fluorescence imaging[J]. Advanced Healthcare Materials, 10, e2100867(2021).

    [41] Guo B P, Shu W, Liu W J et al. Mitochondria-specific ultrasensitive ratiometric AIE probe for imaging endogenous peroxynitrite[J]. Sensors and Actuators B: Chemical, 344, 130206(2021).

    [42] Han X J, Yang X P, Zhang Y R et al. A novel activatable AIEgen fluorescent probe for peroxynitrite detection and its application in EC1 cells[J]. Sensors and Actuators B: Chemical, 321, 128510(2020).

    [43] Liu F Y, Dong H, Tian Y. Real-time monitoring of peroxynitrite (ONOO-) in the rat brain by developing a ratiometric electrochemical biosensor[J]. The Analyst, 144, 2150-2157(2019).

    [44] Li D D, Wang S F, Lei Z H et al. Peroxynitrite activatable NIR-Ⅱ fluorescent molecular probe for drug-induced hepatotoxicity monitoring[J]. Analytical Chemistry, 91, 4771-4779(2019).

    [45] Lei Z H, Sun C X, Pei P et al. Stable, wavelength-tunable fluorescent dyes in the NIR-Ⅱ region for in vivo high-contrast bioimaging and multiplexed biosensing[J]. Angewandte Chemie International Edition, 58, 8166-8171(2019).

    [46] Lv B Y, Chen S, Tang C S et al. Hydrogen sulfide and vascular regulation-An update[J]. Journal of Advanced Research, 27, 85-97(2021).

    [47] Chen Y Q, Zhang F, Yin J Y et al. Protective mechanisms of hydrogen sulfide in myocardial ischemia[J]. Journal of Cellular Physiology, 235, 9059-9070(2020).

    [48] Chen S W, Yue T H, Huang Z H et al. Inhibition of hydrogen sulfide synthesis reverses acquired resistance to 5-FU through miR-215-5p-EREG/TYMS axis in colon cancer cells[J]. Cancer Letters, 466, 49-60(2019).

    [49] Xu G, Yan Q L, Lü X G et al. Imaging of colorectal cancers using activatable nanoprobes with second near-infrared window emission[J]. Angewandte Chemie International Edition, 57, 3626-3630(2018).

    [50] Gao J Z, Wang R C, Zhu T L et al. An electron-deficiency-based framework for NIR-Ⅱ fluorescence probes[J]. Journal of Materials Chemistry B, 8, 9877-9880(2020).

    [51] Shi B, Yan Q L, Tang J et al. Hydrogen sulfide-activatable second near-infrared fluorescent nanoassemblies for targeted photothermal cancer therapy[J]. Nano Letters, 18, 6411-6416(2018).

    [52] Dou K, Feng W Q, Fan C et al. Flexible designing strategy to construct activatable NIR-Ⅱ fluorescent probes with emission maxima beyond 1200 nm[J]. Analytical Chemistry, 93, 4006-4014(2021).

    [53] Zhu T L, Ren N, Liu X et al. Probing the intracellular dynamics of nitric oxide and hydrogen sulfide using an activatable NIR Ⅱ fluorescence reporter[J]. Angewandte Chemie International Edition, 60, 8450-8454(2021).

    [54] Ou Y G, Wilson R E, Weber S G. Methods of measuring enzyme activity ex vivo and in vivo[J]. Annual Review of Analytical Chemistry, 11, 509-533(2018).

    [55] Meng X Q, Zhang J L, Sun Z H et al. Hypoxia-triggered single molecule probe for high-contrast NIR Ⅱ/PA tumor imaging and robust photothermal therapy[J]. Theranostics, 8, 6025-6034(2018).

    [56] Ouyang J, Sun L H, Zeng Z et al. Nanoaggregate probe for breast cancer metastasis through multispectral optoacoustic tomography and aggregation-induced NIR-Ⅰ/Ⅱ fluorescence imaging[J]. Angewandte Chemie International Edition, 59, 10111-10121(2020).

    [57] Chen J A, Pan H M, Wang Z J et al. Imaging of ovarian cancers using enzyme activatable probes with second near-infrared window emission[J]. Chemical Communications, 56, 2731-2734(2020).

    [58] Tang Y F, Li Y Y, Hu X M et al. Dual lock-and-key”-controlled nanoprobes for ultrahigh specific fluorescence imaging in the second near-infrared window[J]. Advanced Materials, 30, 1801140(2018).

    [59] Rupprecht C, Wingen M, Potzkei J et al. A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH[J]. Journal of Biotechnology, 258, 25-32(2017).

    [60] Liang P P, Huang X Y, Wang Y et al. Tumor-microenvironment-responsive nanoconjugate for synergistic antivascular activity and phototherapy[J]. ACS Nano, 12, 11446-11457(2018).

    [61] He Y, Wang S F, Yu P et al. NIR-Ⅱ cell endocytosis-activated fluorescent probes for in vivo high-contrast bioimaging diagnostics[J]. Chemical Science, 12, 10474-10482(2021).

    [62] Ren T B, Wang Z Y, Xiang Z et al. A general strategy for development of activatable NIR-Ⅱ fluorescent probes for in vivo high-contrast bioimaging[J]. Angewandte Chemie International Edition, 60, 800-805(2021).

    [63] Dou K, Huang W J, Xiang Y H et al. Design of activatable NIR-Ⅱ molecular probe for in vivo elucidation of disease-related viscosity variations[J]. Analytical Chemistry, 92, 4177-4181(2020).

    Hanming Dai, Xiaohong Ruan, Jinjun Shao, Xiaochen Dong. Activatable NIR-Ⅱ Small Molecules for Bioimaging[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617010
    Download Citation