• Advanced Photonics Nexus
  • Vol. 2, Issue 4, 046001 (2023)
Shu Pan1、2, Li Wang1、2, Yuanzheng Ma3, Guangyu Zhang1、2, Rui Liu1、2, Tao Zhang1、2, Kedi Xiong1、2, Siyu Chen5, Jian Zhang4、*, Wende Li5、*, and Sihua Yang1、2、*
Author Affiliations
  • 1South China Normal University, College of Biophotonics, MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangzhou, China
  • 2South China Normal University, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou, China
  • 3Tsinghua University, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Shenzhen, China
  • 4Guangzhou Medical University, School of Biomedical Engineering, Guangzhou, China
  • 5Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, China
  • show less
    DOI: 10.1117/1.APN.2.4.046001 Cite this Article Set citation alerts
    Shu Pan, Li Wang, Yuanzheng Ma, Guangyu Zhang, Rui Liu, Tao Zhang, Kedi Xiong, Siyu Chen, Jian Zhang, Wende Li, Sihua Yang. Photoacoustic-enabled automatic vascular navigation: accurate and naked-eye real-time visualization of deep-seated vessels[J]. Advanced Photonics Nexus, 2023, 2(4): 046001 Copy Citation Text show less
    References

    [1] J. Kiely et al. The accuracy of different modalities of perforator mapping for unilateral DIEP flap breast reconstruction: a systematic review and meta-analysis. J. Plast. Reconstr. Aesthet. Surg., 74, 945-956(2021).

    [2] A. D. Knox et al. Comparison of outcomes following autologous breast reconstruction using the DIEP and pedicled TRAM flaps: a 12-year clinical retrospective study and literature review. Plast. Reconstr. Surg., 138, 16-28(2016).

    [3] H. Marks et al. A paintable phosphorescent bandage for postoperative tissue oxygen assessment in DIEP flap reconstruction. Sci. Adv., 6, eabd1061(2020).

    [4] G. Eid-Lidt et al. Distal radial artery approach to prevent radial artery occlusion trial. JACC Cardiovasc. Interv., 14, 378-385(2021).

    [5] M. Gaudino et al. Radial-artery or saphenous-vein grafts in coronary-artery bypass surgery. N. Engl. J. Med., 378, 2069-2077(2018).

    [6] L. J. Sandberg. Tracing: a simple interpretation method for the DIEP flap CT angiography to help operative decision-making. Plast. Reconstr. Surg. Glob. Open., 8, e3218(2020).

    [7] K. Frank et al. Improving the safety of DIEP flap transplantation: detailed perforator anatomy study using preoperative CTA. J. Pers. Med., 12, 701(2022).

    [8] T. S. Wesselius et al. Holographic augmented reality for DIEP flap harvest. Plast. Reconstr. Surg., 147, 25e-29e(2021).

    [9] T. Jiang et al. A novel augmented reality-based navigation system in perforator flap transplantation—a feasibility study. Ann. Plast. Surg., 79, 192-196(2017).

    [10] P. Pratt et al. Through the HoloLens™ looking glass: augmented reality for extremity reconstruction surgery using 3D vascular models with perforating vessels. Eur. Radiol. Exp., 2, 1-7(2018).

    [11] S. Hummelink et al. An innovative method of planning and displaying flap volume in DIEP flap breast reconstructions. J. Plast. Reconstr. Aesthet. Surg., 70, 871-875(2017).

    [12] S. Hummelink et al. A new and innovative method of preoperatively planning and projecting vascular anatomy in DIEP flap breast reconstruction: a randomized controlled trial. Plast. Reconstr. Surg., 143, 1151e-1158e(2019).

    [13] S. Gonzalez et al. The vascuLens: a handsfree projector-based augmented reality system for surgical guidance during DIEP flap harvest(2021).

    [14] S. Josephson et al. Evaluation of carotid stenosis using CT angiography in the initial evaluation of stroke and TIA. Neurology, 63, 457-460(2004).

    [15] M. C. Kock et al. Multi-detector row computed tomography angiography of peripheral arterial disease. Eur. Radiol., 17, 3208-3222(2007).

    [16] D. Ai et al. Augmented reality based real-time subcutaneous vein imaging system. Biomed. Opt. Express, 7, 2565-2585(2016).

    [17] W. Xiang et al. FPGA-based two-dimensional matched filter design for vein imaging systems. IEEE J. Transl. Eng. Health. Med., 9, 1-10(2021).

    [18] N. J. Cuper et al. The use of near-infrared light for safe and effective visualization of subsurface blood vessels to facilitate blood withdrawal in children. Med. Eng. Phys., 35, 433-440(2013).

    [19] C. A. Mela et al. Real-time dual-modal vein imaging system. Int. J. Comput. Assist. Radiol. Surg., 14, 203-213(2019).

    [20] A. Debelmas et al. Reliability of color Doppler ultrasound imaging for the assessment of anterolateral thigh flap perforators: a prospective study of 30 perforators. Plast. Reconstr. Surg., 141, 762-766(2018).

    [21] O. F. Dogan et al. Assessment of the radial artery and hand circulation by computed tomography angiography: a pilot study. Heart Surg. Forum., 8, E28-E33(2005).

    [22] J. González Martínez et al. Preoperative vascular planning of free flaps: comparative study of computed tomographic angiography, color Doppler ultrasonography, and hand-held Doppler. Plast. Reconstr. Surg., 146, 227-237(2020).

    [23] A. W. Pollak et al. Multimodality imaging of lower extremity peripheral arterial disease: current role and future directions. Circ-Cardiovasc. Imag., 5, 797-807(2012).

    [24] M. Erfanzadeh, Q. Zhu. Photoacoustic imaging with low-cost sources; A review. Photoacoustics, 14, 1-11(2019).

    [25] T. Chen et al. Dedicated photoacoustic imaging instrument for human periphery blood vessels: a new paradigm for understanding the vascular health. IEEE Trans. Biomed. Eng., 69, 1093-1100(2021).

    [26] A. Khadria et al. Long-duration and non-invasive photoacoustic imaging of multiple anatomical structures in a live mouse using a single contrast agent. Adv. Sci., 9, 2202907(2022).

    [27] M. Li et al. Three-dimensional deep-tissue functional and molecular imaging by integrated photoacoustic, ultrasound, and angiographic tomography (PAUSAT). IEEE Trans. Med. Imaging, 41, 2704-2714(2022).

    [28] X. Zhu et al. Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy. Light-Sci. Appl., 11, 1-15(2022).

    [29] X. Wang et al. Integrated thermoacoustic and ultrasound imaging based on the combination of a hollow concave transducer array and a linear transducer array. Phys. Med. Biol., 66, 115011(2021).

    [30] Y. Zhang, L. Wang. Adaptive dual-speed ultrasound and photoacoustic computed tomography. Photoacoustics, 27, 100380(2022).

    [31] I. Tsuge et al. Photoacoustic tomography shows the branching pattern of anterolateral thigh perforators in vivo. Plast. Reconstr. Surg., 141, 1288-1292(2018).

    [32] J. Xia et al. Photoacoustic tomography: principles and advances. Prog. Electromagn Res., 147, 1-22(2014).

    [33] L. Lin et al. High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation. Nat. Commun., 12, 1-10(2021).

    [34] S. Na et al. Massively parallel functional photoacoustic computed tomography of the human brain. Nat. Biomed. Eng., 6, 584-592(2022).

    [35] L. Lin et al. Photoacoustic computed tomography of breast cancer in response to neoadjuvant chemotherapy. Adv. Sci., 8, 2003396(2021).

    [36] Y. Duan et al. Spherical-matching hyperbolic-array photoacoustic computed tomography. J. Biophotonics, 14, e202100023(2021).

    [37] K. H. Fan-Chiang et al. Analog LCOS SLM devices for AR display applications. J. Soc. Inf. Display., 28, 581-590(2020).

    [38] C. Chang et al. Speckle reduced lensless holographic projection from phase-only computer-generated hologram. Opt. Express, 25, 6568-6580(2017).

    [39] M. Chlipała et al. Wide angle holographic video projection display. Opt. Lett., 46, 4956-4959(2021).

    [40] Y. Dai et al. Calibration of a phase-only spatial light modulator for both phase and retardance modulation. Opt. Express, 27, 17912-17926(2019).

    [41] K. M. Johnson et al. Smart spatial light modulators using liquid crystals on silicon. IEEE J. Quantum Electron., 29, 699-714(1993).

    [42] T. Whelan et al. ElasticFusion: dense SLAM without a pose graph(2015).

    [43] N. Mahmoud et al. Live tracking and dense reconstruction for handheld monocular endoscopy. IEEE Trans. Med. Imaging, 38, 79-89(2018).

    [44] W. Xia et al. A robust edge-preserving stereo matching method for laparoscopic Images. IEEE Trans. Med. Imaging, 41, 1651-1664(2022).

    [45] American National Standard for Safe Use of Lasers(2014).

    [46] T. Jiang et al. HoloLens-based vascular localization system: precision evaluation study with a three-dimensional printed model. J. Med. Internet Res., 22, e16852(2020).

    [47] T. Tansatit et al. Periorbital and intraorbital studies of the terminal branches of the ophthalmic artery for periorbital and glabellar filler placements. Aesthetic Plast. Surg., 41, 678-688(2017).

    [48] K. T. D. Loh et al. Successfully managing impending skin necrosis following hyaluronic acid filler injection, using high-dose pulsed hyaluronidase. Plast. Reconstr. Surg. Glob. Open, 6, e1639(2018).

    Shu Pan, Li Wang, Yuanzheng Ma, Guangyu Zhang, Rui Liu, Tao Zhang, Kedi Xiong, Siyu Chen, Jian Zhang, Wende Li, Sihua Yang. Photoacoustic-enabled automatic vascular navigation: accurate and naked-eye real-time visualization of deep-seated vessels[J]. Advanced Photonics Nexus, 2023, 2(4): 046001
    Download Citation