• Laser & Optoelectronics Progress
  • Vol. 57, Issue 3, 030001 (2020)
Yuting Ye1、2, Hui Ma3, Chunlei Sun1、2, Zequn Chen1、2, Jianghong Wu1、2, Yiqi Chen1、2, Ye Luo1、2, Hongtao Lin3, and Lan Li1、2、*
Author Affiliations
  • 1Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
  • 2Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
  • 3College of Information Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • show less
    DOI: 10.3788/LOP57.030001 Cite this Article Set citation alerts
    Yuting Ye, Hui Ma, Chunlei Sun, Zequn Chen, Jianghong Wu, Yiqi Chen, Ye Luo, Hongtao Lin, Lan Li. Research Progress on Flexible Photonic Materials and Devices[J]. Laser & Optoelectronics Progress, 2020, 57(3): 030001 Copy Citation Text show less
    References

    [1] Roelkens G, Abassi A, Cardile P et al. III-V-on-silicon photonic devices for optical communication and sensing[J]. IEEE Photonics Journal, 3, 969-1004(2015).

    [2] Duan G H, Olivier S, Jany C et al. Hybrid III-V silicon photonic integrated circuits for optical communication applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 379-389(2016).

    [3] Shih M H, Hsu K S, Lee K et al. Compact tunable laser with InGaAsP photonic crystal nanorods for C-band communication[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 738-742(2015).

    [4] Park D W, Schendel A A, Mikael S et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications[J]. Nature Communications, 5, 5258(2014).

    [5] Park S, Guo Y Y, Jia X T et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 20, 612-619(2017).

    [6] Gao L, Zhang Y H, Malyarchuk V et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin[J]. Nature Communications, 5, 4938(2014).

    [7] Lu N S, Yang S X, Wang L[M]. Stretchability, conformability, and low-cost manufacture of epidermal sensors, 31-51(2016).

    [8] Ye Y, Wong Z J, Lu X F et al. Monolayer excitonic laser[J]. Nature Photonics, 9, 733-737(2015).

    [9] Harari G, Bandres M A, Lumer Y et al. 359(6381): eaar4003(2018).

    [10] Liu M, Yin X B, Ulin-Avila E et al. A graphene-based broadband optical modulator[J]. Nature, 474, 64-67(2011).

    [11] Liu A S, Jones R, Liao L et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature, 427, 615-618(2004).

    [12] Youngblood N, Chen C, Koester S J et al. Waveguide-integrated black phosphorus photodetectorwith high responsivity and low dark current[J]. Nature Photonics, 9, 247-252(2015).

    [13] Du S, Lu W, Ali A et al. A broadband fluorographene photodetector[J]. Advanced Materials, 29, 1700463(2017).

    [14] Parameswaran C, Gupta D. Lowcost sponge based piezocapacitive sensors using a single step leavening agent mediated autolysis process[J]. Journal of Materials Chemistry C, 6, 5473-5481(2018).

    [15] Lötters J C, Olthuis W, Veltink P H et al. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications[J]. Journal of Micromechanics and Microengineering, 7, 145-147(1997).

    [16] Shi Z, An D C, Jiang N H et al. Optical true-time-delay lines using polyimide-based waveguides for wideband phased-array antennas[J]. Proceedings of SPIE, 3952, 214-222(2000).

    [17] Chen L, Yang H J, Qiang Z X et al. Direct measurement of spectrally selective absorption enhancement in Fano resonance photonic crystal cavities on plastic substrates[J]. Proceedings of SPIE, 7609, 76090E(2010).

    [18] Chortos A, Liu J, Bao Z N. Pursuing prosthetic electronic skin[J]. Nature Materials, 15, 937-950(2016).

    [19] Chen L Y. Tee Benjamin C K, Chortos A L, et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care[J]. Nature Communications, 5, 5028(2014).

    [20] Lee J, Kwon H, Seo J et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials, 27, 2433-2439(2015).

    [21] Metzger C, Fleisch E, Meyer J et al. Flexible-foam-based capacitive sensor arrays for object detection at low cost[J]. Applied Physics Letters, 92, 013506(2008).

    [22] Bilenberg B, Nielsen T, Clausen B et al. PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics[J]. Journal of Micromechanics and Microengineering, 14, 814-818(2004).

    [23] Shin Y S, Cho K, Lim S H et al. PDMS-based micro PCR chip with Parylene coating[J]. Journal of Micromechanics and Microengineering, 13, 768-774(2003).

    [24] Wilbur J L, Jackman R J, Whitesides G M et al. Elastomeric optics[J]. Chemistry of Materials, 8, 1380-1385(1996).

    [25] Choi C, Lin L, Liu Y et al. Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects[J]. Journal of Lightwave Technology, 22, 2168-2176(2004).

    [26] Bosman E, van Steenberge G, Milenkov I et al. Fully flexible optoelectronic foil[J]. IEEE Journal of Selected Topics in Quantum Electronics, 16, 1355-1362(2010).

    [27] Huang Y Y, Paloczi G T, Yariv A et al. Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography[J]. The Journal of Physical Chemistry B, 108, 8606-8613(2004).

    [28] Paloczi G T, Huang Y Y, Yariv A. Free-standing all-polymer microring resonator optical filter[J]. Electronics Letters, 39, 1650-1651(2003).

    [29] Kim K J, Seo J K, Oh M C. Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector[J]. Optics Express, 16, 1423-1430(2008).

    [30] Clark J, Lanzani G. Organic photonics for communications[J]. Nature Photonics, 4, 438-446(2010).

    [31] Furumi S, Fudouzi H, Miyazaki H et al. Flexible polymer colloidal-crystal lasers with a light-emitting planar defect[J]. Advanced Materials, 19, 2067-2072(2007).

    [32] Song H C, Oh M C, Ahn S W et al. Flexible low-voltage electro-optic polymer modulators[J]. Applied Physics Letters, 82, 4432-4434(2003).

    [33] Ma H. JenAK Y, Dalton L R. Polymer-based optical waveguides: materials, processing, and devices[J]. Advanced Materials, 14, 1339-1365(2002).

    [34] Seo J H, Zhang K, Kim M et al. Phototransistors: flexible phototransistors based on single-crystalline silicon nanomembranes[J]. Advanced Optical Materials, 4, 120-125(2016).

    [35] Seo J H, Oh T Y, Park J et al. A multifunction heterojunction formed between pentacene and a single-crystal silicon nanomembrane[J]. Advanced Functional Materials, 23, 3398-3403(2013).

    [36] Cho M, Seo J H, Zhao D Y et al. Amorphous Si/SiO2 distributed Bragg reflectors with transfer printed single-crystalline Si nanomembranes[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 34, 040601(2016).

    [37] Yoon J, Baca A J, Park S I et al. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs[J]. Nature Materials, 7, 907-915(2008).

    [38] Kim M, Seo J H, Yu Z F et al. Flexible germanium nanomembrane metal-semiconductor-metal photodiodes[J]. Applied Physics Letters, 109, 051105(2016).

    [39] Qin G X, Cai T H, Yuan H et al. Flexible radio-frequency single-crystal germanium switch on plastic substrates[J]. Applied Physics Letters, 104, 163501(2014).

    [40] Qin G X, Yuan H C, Qin Y C et al. Fabrication and characterization of flexible microwave single-crystal germanium nanomembrane diodes on a plastic substrate[J]. IEEE Electron Device Letters, 34, 160-162(2013).

    [41] Yin J, Cui X R, Wang X W et al. Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission[J]. Applied Physics Letters, 108, 241107(2016).

    [42] Yang W Q, Yang H J, Qin G X et al. Large-area InP-based crystalline nanomembrane flexible photodetectors[J]. Applied Physics Letters, 96, 121107(2010).

    [43] Fan D J, Lee K, Forrest S R. Flexible thin-film InGaAs photodiode focal plane array[J]. ACS Photonics, 3, 670-676(2016).

    [44] Zheng Z Q, Zhang T M, Yao J et al. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices[J]. Nanotechnology, 27, 225501(2016).

    [45] Velusamy D B, Haque M A, Parida M R et al. Hybrid materials: 2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors[J]. Advanced Functional Materials, 27, 1605554(2017).

    [46] Velusamy D B, Kim R H, Cha S et al. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection[J]. Nature Communications, 6, 8063(2015).

    [47] Zhao S, Liu X, Woo S Y et al. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band[J]. Applied Physics Letters, 107, 043101(2015).

    [48] Sarwar A G, Carnevale S D, Yang F et al. Semiconductor nanowirelight-emitting diodes grown on metal: a direction toward large-scale fabrication of nanowire devices[J]. Small, 11, 5402-5408(2015).

    [49] Kumaresan V, Largeau L, Madouri A et al. Epitaxy of GaN nanowires on graphene[J]. Nano Letters, 16, 4895-4902(2016).

    [50] Dai X, Messanvi A, Zhang H Z et al. Flexible light-emitting diodes based on vertical nitride nanowires[J]. Nano Letters, 15, 6958-6964(2015).

    [51] Chen G, Liang B, Liu Z et al. High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays[J]. Journal of Materials Chemistry C, 2, 1270-1277(2014).

    [52] Claudon J, Bleuse J, Malik N S et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire[J]. Nature Photonics, 4, 174-177(2010).

    [53] Konstantatos G, Howard I, Fischer A et al. Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 442, 180-183(2006).

    [54] Sukhovatkin V, Hinds S, Brzozowski L et al. Colloidal quantum-dot photodetectors exploiting multiexciton generation[J]. Science, 324, 1542-1544(2009).

    [55] McDonald S A, Konstantatos G, Zhang S G et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nature Materials, 4, 138-142(2005).

    [56] Polman A, Zijlstra T et al. Amorphous silicon waveguides for microphotonics[J]. Journal of Applied Physics, 92, 649-653(2002).

    [57] Harke A, Krause M, Mueller J. Low-loss singlemode amorphous silicon waveguides[J]. Electronics Letters, 41, 1377-1379(2005).

    [58] Kuyken B, Ji H, Clemmen S et al. Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides[J]. Optics Express, 19, B146-B153(2011).

    [59] Kamei T, Paegel B M, Scherer J R et al. Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices[J]. Analytical Chemistry, 75, 5300-5305(2003).

    [60] Roeloffzen C G H, Hoekman M, Klein E J et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-21(2018).

    [61] Sanne A, Ghosh R, Rai A et al. Top-gated chemical vapor deposited MoS2 field-effect transistors on Si3N4 substrates[J]. Applied Physics Letters, 106, 062101(2015).

    [62] Furuhashi M, Fujiwara M, Ohshiro T et al. Development of microfabricated TiO2 channel waveguides[J]. AIP Advances, 1, 032102(2011).

    [63] Liu J N, Huang Q L, Liu K K et al. Nanoantenna-microcavity hybrids with highly cooperative plasmonic-photonic coupling[J]. Nano Letters, 17, 7569-7577(2017).

    [64] Park J, Ozdemir S K, Monifi F et al. Titanium dioxide whispering gallery microcavities[J]. Advanced Optical Materials, 2, 711-717(2015).

    [65] Atkins R M. -07-27[P]. Espindola R P. Method for producing photo induced grating devices by UV irradiation of heat-activated hydrogenated glass: US5930420 A.(1999).

    [66] Glebov L B, Smirnov V I. -07-01[2019-12-25]. http: ∥www. google. co. in/patents/US7394842B2.(2008).

    [67] Glebov L B, Flecher E, Smirnov V I et al. -09-09[2019-12- 25]. http: ∥www. google. co. in/patents/ US7424185B2.(2008).

    [68] Flemming J H. -06-13[2019-12-25]. http: ∥www. google. co. in/patents/US16/072828.(2019).

    [69] Di X X, Hu Z M, Jiang J T et al. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs[J]. Chemical Communications, 53, 11068-11071(2017).

    [70] Sandland J G. Sputtered silicon oxynitride for microphotonics: a materials study[D]. Boston: Massachusetts Institute of Technology(2004).

    [71] Kim J, Winick K A, Florea C et al. Design and fabrication of low-loss hydrogenated amorphous silicon overlay DBR for glass waveguide devices[J]. IEEE Journal of Selected Topics in Quantum Electronics, 8, 1307-1315(2002).

    [72] Fan L, Varghese L T, Xuan Y et al. Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing[J]. Optics Express, 20, 20564-20575(2012).

    [73] Rangarajan B, Kovalgin A Y, Wörhoff K et al. Low-temperature deposition of high-quality silicon oxynitride films for CMOS-integrated optics[J]. Optics Letters, 38, 941-943(2013).

    [74] Li L, Lin H T, Qiao S T et al. Monolithically integrated stretchable photonics[J]. Light: Science & Applications, 7, 17138(2018).

    [75] Kim M, Seo J H, Yu Z F et al. Flexible germanium nanomembrane metal-semiconductor-metal photodiodes[J]. Applied Physics Letters, 109, 051105(2016).

    [76] Hsueh C H. Modeling of elastic deformation of multilayers due to residual stresses and external bending[J]. Journal of Applied Physics, 91, 9652-9656(2002).

    [77] Kaltenbrunner M, Sekitani T, Reeder J et al. An ultra-lightweight design for imperceptible plastic electronics[J]. Nature, 499, 458-463(2013).

    [78] Kim D H, Ahn J H, Choi W M et al. Stretchable and foldable silicon integrated circuits[J]. Science, 320, 507-511(2008).

    [79] Sekitani T, Zschieschang U, Klauk H et al. Flexible organic transistors and circuits with extreme bending stability[J]. Nature Materials, 9, 1015-1022(2010).

    [80] Yuan H C, Ma Z Q, Roberts M M et al. High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers[J]. Journal of Applied Physics, 100, 013708(2006).

    [81] Seo J H, Chang T H, Lee J et al. Microwave flexible transistors on cellulose nanofibrillated fiber substrates[J]. Applied Physics Letters, 106, 262101(2015).

    [82] Yang W Q, Yang H J, Qin G X et al. Large-area InP-based crystalline nanomembrane flexible photodetectors[J]. Applied Physics Letters, 96, 121107(2010).

    [83] Chen Y, Li H, Li M. Flexible and tunable silicon photonic circuits on plastic substrates[J]. Scientific Reports, 2, 622(2012).

    [84] Li L, Lin H T, Qiao S T et al. Integrated flexible chalcogenide glass photonic devices[J]. Nature Photonics, 8, 643-649(2014).

    [85] Hu J J, Li L, Lin H T et al. Flexible integrated photonics: where materials, mechanics and optics meet [Invited][J]. Optical Materials Express, 3, 1313-1331(2013).

    [86] Sun J Y, Lu N S, Yoon J et al. Inorganic islands on a highly stretchable polyimide substrate[J]. Journal of Materials Research, 24, 3338-3342(2009).

    [87] Li L, Zhang P, Wang W M et al. Foldable and cytocompatible Sol-gel TiO2 photonics[J]. Scientific Reports, 5, 13832(2015).

    [88] Li L, Lin H T, Huang Y Z et al. High-performance flexible waveguide-integrated photodetectors[J]. Optica, 5, 44-51(2018).

    [89] Harrison C, Stafford C M, Zhang W et al. Sinusoidal phase grating created by a tunably buckled surface[J]. Applied Physics Letters, 85, 4016-4018(2004).

    [90] Yu C J. O'Brien K, Zhang Y H, et al. Tunable optical gratings based on buckled nanoscale thin films on transparent elastomeric substrates[J]. Applied Physics Letters, 96, 041111(2010).

    [91] Lee S, Kim S, Kim T T et al. Reversibly stretchable and tunable terahertz metamaterials with wrinkled layouts[J]. Advanced Materials, 24, 3491-3497(2012).

    [92] Amjadi M, Pichitpajongkit A, Lee S et al. Highly stretchable and sensitive strain sensor based onsilver nanowire-elastomer nanocomposite[J]. ACS Nano, 8, 5154-5163(2014).

    [93] Yamada T, Hayamizu Y, Yamamoto Y et al. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nature Nanotechnology, 6, 296-301(2011).

    [94] Kim D H, Lu N S, Ghaffari R et al. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy[J]. Nature Materials, 10, 316-323(2011).

    [95] Verplancke R, Bossuyt F, Cuypers D et al. Thin-film stretchable electronics technology based on meandering interconnections: fabrication and mechanical performance[J]. Journal of Micromechanics and Microengineering, 22, 015002(2012).

    [96] Li L, Lin H T, Michon J et al. A new twist on glass: a brittle material enabling flexible integrated photonics[J]. International Journal of Applied Glass Science, 8, 61-68(2017).

    [97] Aksu S, Huang M, Artar A et al. Flexible plasmonics on unconventional and nonplanar substrates[J]. Advanced Materials, 23, 4422-4430(2011).

    [98] Ryabchun A, Wegener M, Gritsai Y et al. Novel effective approach for the fabrication of PDMS-based elastic volume gratings[J]. Advanced Optical Materials, 4, 169-176(2016).

    [99] Ghisleri C. Potenza M A C, Ravagnan L, et al. A simple scanning spectrometer based on a stretchable elastomeric reflective grating[J]. Applied Physics Letters, 104, 061910(2014).

    [100] Yin K, Lee Y H, He Z Q et al. Stretchable, flexible, rollable, and adherable polarization volume grating film[J]. Optics Express, 27, 5814-5823(2019).

    [101] Khodasevych I E, Shah C M, Sriram S et al. Elastomeric silicone substrates for terahertz fishnet metamaterials[J]. Applied Physics Letters, 100, 061101(2012).

    [102] Shalaev V M, Cai W S, Chettiar U K et al. Negative index of refraction in optical metamaterials[J]. Optics Letters, 30, 3356-3358(2005).

    [103] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 5, 523-530(2011).

    [104] Walia S, Shah C M, Gutruf P et al. Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales[J]. Applied Physics Reviews, 2, 011303(2015).

    [105] Xu X C, Subbaraman H, Hosseini A et al. Stamp printing of silicon-nanomembrane-based photonic devices onto flexible substrates with a suspended configuration[J]. Optics Letters, 37, 1020-1022(2012).

    [106] Meitl M A, Zhu Z T, Kumar V et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp[J]. Nature Materials, 5, 33-38(2006).

    [107] Zablocki M J, Sharkawy A, Ebil O et al. Nanomembrane transfer process for intricate photonic device applications[J]. Optics Letters, 36, 58-60(2011).

    [108] Zhou W D, Ma Z Q, Chuwongin S et al. Semiconductor nanomembranes for integrated silicon photonics and flexible Photonics[J]. Optical and Quantum Electronics, 44, 605-611(2012).

    [109] Chanda D, Shigeta K, Gupta S et al. Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing[J]. Nature Nanotechnology, 6, 402-407(2011).

    [110] Hines D R, Ballarotto V W, Williams E D et al. Transfer printing methods for the fabrication of flexible organic electronics[J]. Journal of Applied Physics, 101, 024503(2007).

    [111] Lin H T, Li L, Zou Y et al. Chalcogenide glass planar photonics: from mid-IR sensing to 3-D flexible substrate integration[J]. Proceedings of SPIE, 8600, 86000K(2013).

    [112] Zou Y, Zhang D N, Lin H T et al. High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates[J]. Advanced Optical Materials, 2, 478-486(2014).

    [113] Koyama F, Liou K Y, Dentai A G et al. Multiple-quantum-well GaInAs/GaInAsP tapered broad-area amplifiers with monolithically integrated waveguide lens for high-power applications[J]. IEEE Photonics Technology Letters, 5, 916-919(1993).

    [114] Ahn D, Hong C Y, Liu J F et al. High performance, waveguide integrated Ge photodetectors[J]. Optics Express, 15, 3916-3921(2007).

    [115] Suzuki K, Takiguchi K, Hotate K. Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit[J]. Journal of Lightwave Technology, 18, 66-72(2000).

    [116] Mahameed R, Sinha N, Pisani M B et al. Dual-beam actuation of piezoelectric AlN RF MEMS switches monolithically integrated with AlN contour-mode resonators[J]. Journal of Micromechanics and Microengineering, 18, 105011(2008).

    [117] Karagodsky V, Pesala B, Chase C et al. Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings[J]. Optics Express, 18, 694-699(2010).

    [118] Lee S J, Ku Z, Barve A et al. A monolithically integrated plasmonic infrared quantum dot camera[J]. Nature Communications, 2, 286(2011).

    [119] Samusjew A, Kratzer M, Moser A et al. Inkjet printing of soft, stretchable optical waveguides through the photopolymerization of high-profile linear patterns[J]. ACS Applied Materials & Interfaces, 9, 4941-4947(2017).

    [120] Heck M J R, Bauters J F, Davenport M L et al. Hybrid silicon photonic integrated circuit technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 6100117(2013).

    [121] Roelkens G. Brouckaert J, van Thourhout D, et al. Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene[J]. Journal of the Electrochemical Society, 153, G1015-G1019(2006).

    [122] Yun S, Park S, Park B et al. Polymer-waveguide-based flexible tactile sensor array for dynamic response[J]. Advanced Materials, 26, 4474-4480(2014).

    [123] Zhao H C, O'Brien K, Li S et al. 1(1): eaai7529(2016).

    [124] Ramuz M, Tee B C, Tok J B et al. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics[J]. Advanced Materials, 24, 3223-3227(2012).

    [125] Missinne J, Benéitez N T, Chiesura G et al. Flexible thin polymer waveguide Bragg grating sensor foils for strain sensing[J]. Proceedings of SPIE, 10101, 101010X(2017).

    [126] Karrock T, Gerken M. Pressure sensor based on flexible photonic crystal membrane[J]. Biomedical Optics Express, 6, 4901-4911(2015).

    [127] Harnett C K, Zhao H C, Shepherd R F. Stretchable optical fibers: threads for strain-sensitive textiles[J]. Advanced Materials Technologies, 2, 1700087(2017).

    [128] To C, Hellebrekers T L, Park Y L. Highly stretchable optical sensors for pressure, strain, and curvature measurement. [C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 28-October 2, 2015. Hamburg, Germany. IEEE, 5898-5903(2015).

    [129] Guerrero R A, Barretto J T. Uy J L V, et al. Effects of spontaneous surface buckling on the diffraction performance of an Au-coated elastomeric grating[J]. Optics Communications, 270, 1-7(2007).

    [130] Zhang L, Pan J, Zhang Z et al[2020-01-25]. Ultrasensitive hybrid optical skin [2020-01-25].https: ∥arxiv. org/ftp/arxiv/papers/1812/1812. 03808. pdf..

    [131] Xu L Z, Gutbrod S R, Bonifas A P et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium[J]. Nature Communications, 5, 3329(2014).

    [132] Kalathimekkad S, Missinne J, Schaubroeck D et al. Alcohol vapor sensor based on fluorescent dye-doped optical waveguides[J]. IEEE Sensors Journal, 15, 76-81(2015).

    [133] Applegate M B, Perotto G, Kaplan D L et al. Biocompatible silk step-index optical waveguides[J]. Biomedical Optics Express, 6, 4221-4227(2015).

    [134] Kujala S, Mannila A, Karvonen L et al. Natural silk as a photonics component: a study on its light guiding and nonlinear optical properties[J]. Scientific Reports, 6, 22358(2016).

    [135] Bai W B, Yang H J, Ma Y J et al. Optical waveguides: flexible transient optical waveguides and surface-wave biosensors constructed from monocrystalline silicon[J]. Advanced Materials, 30, 1870239(2018).

    [136] Liu X J, Wang J J, Tang L H et al. Flexible plasmonic metasurfaces with user-designed patterns for molecular sensing and cryptography[J]. Advanced Functional Materials, 26, 5515-5523(2016).

    [137] Chen Y, Lin H T, Hu J J et al. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing[J]. ACS Nano, 8, 6955-6961(2014).

    [138] Jin T N. Lin H Y G, Tiwald T, et al. Flexible mid-infrared photonic circuits for real-time and label-free hydroxyl compound detection[J]. Scientific Reports, 9, 4153(2019).

    [139] Li M J, Hoover B, Nazarov V N et al. Multicore fiber for optical interconnect applications. [C]∥2012 17th Opto-Electronics and Communications Conference, July 2-6, 2012. Busan, Korea (South). IEEE, 564-565(2012).

    [140] van Steenberge G, Geerinck P, van Put S et al. MT-compatible laser-ablated interconnections for optical printed circuit boards[J]. Journal of Lightwave Technology, 22, 2083-2090(2004).

    [141] Bona G L, Offrein B J, Bapst U et al. Characterization of parallel optical-interconnect waveguides integrated on a printed circuit board[J]. Proceedings of SPIE, 5453, 134-141(2004).

    [142] Krishnamoorthy A V, Ho R, Zheng X Z et al. Computer systems based on silicon photonic interconnects[J]. Proceedings of the IEEE, 97, 1337-1361(2009).

    [143] Batten C, Joshi A, Orcutt J et al. Building manycore processor-to-DRAM networks with monolithic CMOS silicon photonics[J]. IEEE Micro, 29, 8-21(2009).

    [144] Chen R T, Lin L, Choi C et al. Fully embedded board-level guided-wave optoelectronic interconnects[J]. Proceedings of the IEEE, 88, 780-793(2000).

    [145] Gu T, Nair R, Haney M W. Prismatic coupling structure for intrachip global communication[J]. IEEE Journal of Quantum Electronics, 45, 388-395(2009).

    [146] Missinne J. Kalathimekkad S, van Hoe B, et al. Stretchable optical waveguides[J]. Optics Express, 22, 4168-4179(2014).

    [147] Doany F E, Schow C L, Kash J A et al. Waveguide-coupled parallel optical transceiver technology for Tb/s-class chip-to-chip data transmission[J]. Proceedings of SPIE, 6899, 68990V(2008).

    [148] Kromer C, Sialm G, Berger C et al. A 100-mW 4/spl times/10 Gb/s transceiver in 80-nm CMOS for high-density optical interconnects[J]. IEEE Journal of Solid-State Circuits, 40, 2667-2679(2005).

    [149] Li L, Zou Y, Lin H T et al. A fully-integrated flexible photonic platform for chip-to-chip optical interconnects[J]. Journal of Lightwave Technology, 31, 4080-4086(2013).

    [150] de Wilde M. Chip-to-chip parallel optical interconnects over optical backpanels based on arrays of multimode waveguides. [C]∥Proceedings of the 9th Annual Symposium of the IEEE/LEOS Benelux Chapter, 61-64(2004).

    [151] Bosman E, van Steenberge G, van Hoe B et al. Highly reliable flexible active optical links[J]. IEEE Photonics Technology Letters, 22, 287-289(2010).

    [152] Hsu K S, Chiu T T, Lee P T et al. Wavelength tuning by bending a flexible photonic crystal laser[J]. Journal of Lightwave Technology, 31, 1960-1964(2013).

    [153] Yu C L. Kim H, de Leon N, et al. Stretchable photonic crystal cavity with wide frequency tunability[J]. Nano Letters, 13, 248-252(2013).

    [154] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 16, 2818-2823(2016).

    [155] Kamali S M, Arbabi E, Arbabi A et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser & Photonics Reviews, 10, 1002-1008(2016).

    [156] Malek S C, Ee H S, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 17, 3641-3645(2017).

    [157] Yin K, Lee Y H, He Z Q et al. Stretchable, flexible, and adherable polarization volume grating film for waveguide-based augmented reality displays[J]. Journal of the Society for Information Display, 27, 232-237(2019).

    [158] Schauer S, Liu X, Worgull M et al. Shape-memory polymers as flexible resonator substrates for continuously tunable organic DFB lasers[J]. Optical Materials Express, 5, 576-584(2015).

    [159] Jiang Z H, Kang L, Werner D H. Conformal metasurface-coated dielectric waveguides for highly confined broadband optical activity with simultaneous low-visibility and reduced crosstalk[J]. Nature Communications, 8, 356(2017).

    [160] Kamali S M, Arbabi A, Arbabi E et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces[J]. Nature Communications, 7, 11618(2016).

    [161] Ni X, Wong Z J, Mrejen M et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 349, 1310-1314(2015).

    [162] Cheng J R, Jafar-Zanjani S, Mosallaei H. All-dielectric ultrathin conformal metasurfaces: lensing and cloaking applications at 532 nm wavelength[J]. Scientific Reports, 6, 38440(2016).

    [163] Yamagiwa S, Ishida M, Kawano T. Flexible parylene-film optical waveguide arrays[J]. Applied Physics Letters, 107, 083502(2015).

    [164] Deisseroth K. Optogenetics[J]. Nature Methods, 8, 26-29(2011).

    [165] Park S, Loke G, Fink Y et al. Flexible fiber-based optoelectronics for neural interfaces[J]. Chemical Society Reviews, 48, 1826-1852(2019).

    [166] Lu C, Park S, Richner T J et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances, 3, e1600955(2017).

    Yuting Ye, Hui Ma, Chunlei Sun, Zequn Chen, Jianghong Wu, Yiqi Chen, Ye Luo, Hongtao Lin, Lan Li. Research Progress on Flexible Photonic Materials and Devices[J]. Laser & Optoelectronics Progress, 2020, 57(3): 030001
    Download Citation