• Opto-Electronic Advances
  • Vol. 3, Issue 6, 190038-1 (2020)
Xinyan Zhao1、2 and Weiwei Deng2、*
Author Affiliations
  • 1Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
  • 2Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
  • show less
    DOI: 10.29026/oea.2020.190038 Cite this Article
    Xinyan Zhao, Weiwei Deng. Printing photovoltaics by electrospray[J]. Opto-Electronic Advances, 2020, 3(6): 190038-1 Copy Citation Text show less
    References

    [1] M A Green, A Ho-Baillie, H J Snaith. The emergence of perovskite solar cells. Nat Photonics, 8, 506-514(2014).

    [2] J S Huang, Y C Shao, Q F Dong. Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond?. J Phys Chem Lett, 6, 3218-3227(2015).

    [3] A Kojima, K Teshima, Y Shirai, T Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050-6051(2009).

    [4] J Burschka, N Pellet, S J Moon, R Humphry-Baker, P Gao et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316-319(2013).

    [5] M A Green, Y Hishikawa, E D Dunlop, D H Levi, J Hohl-Ebinger et al. Solar cell efficiency tables (version 53). Prog Photovoltaics, 27, 3-12(2019).

    [6] Y Cui, H F Yao, J Q Zhang, T Zhang, Y M Wang et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun, 10, 2515(2019).

    [7] K Jiang, Q Y Wei, J Y L Lai, Z X Peng, H K Kim et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule, 3, 3020-3033(2019).

    [8] X Y Du, T Heumueller, W Gruber, A Classen, T Unruh et al. Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years. Joule, 3, 215-226(2019).

    [9] J W Gong, J Liang, K Sumathy. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew Sust Energy Rev, 16, 5848-5860(2012).

    [10] X D Gu, L Shaw, K Gu, M F Toney, Z N Bao. The meniscus-guided deposition of semiconducting polymers. Nat Commun, 9, 534(2018).

    [11] L Zhang, B J Lin, B Hu, X B Xu, W Ma. Blade-cast nonfullerene organic solar cells in air with excellent morphology, efficiency, and stability. Adv Mater, 30, 1800343(2018).

    [12] W Q Wu, Q Wang, Y J Fang, Y C Shao, S Tang et al. Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat Commun, 9, 1625(2018).

    [13] J Xu, H C Wu, C X Zhu, A Ehrlich, L Shaw et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat Mater, 18, 594-601(2019).

    [14] Q Wu, J Guo, R Sun, J Guo, S F Jia et al. Slot-die printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost PV-driven water splitting. Nano Energy, 61, 559-566(2019).

    [15] C T Zuo, D Vak, D Angmo, L M Ding, M Gao. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 46, 185-192(2018).

    [16] J Y Yang, Y B Lin, W H Zheng, A L Liu, W Z Cai et al. Roll-to-roll slot-die-printed polymer solar cells by self-assembly. ACS Appl Mater Interfaces, 10, 22485-22494(2018).

    [17] T M Eggenhuisen, Y Galagan, E W C Coenen, W P Voorthuijzen, M W L Slaats et al. Digital fabrication of organic solar cells by Inkjet printing using non-halogenated solvents. Solar Energy Mater Solar Cells, 134, 364-372(2015).

    [18] T M Eggenhuisen, Y Galagan, A F K V Biezemans, T M W L Slaats, W P Voorthuijzen et al. High efficiency, fully inkjet printed organic solar cells with freedom of design. J Mater Chem A, 3, 7255-7262(2015).

    [19] Z H Wei, H N Chen, K Y Yan, S H Yang. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed, 53, 13239-13243(2014).

    [20] A L Liu, W H Zheng, X L Yin, J Y Yang, Y B Lin et al. Manipulate micrometer surface and nanometer bulk phase separation structures in the active layer of organic solar cells via synergy of ultrasonic and high-pressure gas spraying. ACS Appl Mater Interfaces, 11, 10777-10784(2019).

    [21] H X Duan, C Li, W W Yang, B Lojewski, L An et al. Near-field electrospray microprinting of polymer-derived ceramics. J Microelectromech Syst, 22, 1-3(2013).

    [22] X Y Zhao, Z Tao, W W Yang, K C Xu, L Wang et al. Morphology and electrical characteristics of polymer: Fullerene films deposited by electrospray. Solar Energy Mater Solar Cells, 183, 137-145(2018).

    [23] X Y Zhao, W W Yang, L Cheng, X Z Wang, S L Lim et al. Effects of Damkhöler number of evaporation on the morphology of active layer and the performance of organic heterojunction solar cells fabricated by electrospray method. Solar Energy Mater Solar Cells, 134, 140-147(2015).

    [24] J H Zheng, M Zhang, C F J Lau, X F Deng, J Kim et al. Spin-coating free fabrication for highly efficient perovskite solar cells. Solar Energy Mater Solar Cells, 168, 165-171(2017).

    [25] M Cloupeau, B Prunet-Foch. Electrostatic spraying of liquids in cone-jet mode. J Electrostat, 22, 135-159(1989).

    [26] W W Deng, A Gomez. The role of electric charge in microdroplets impacting on conducting surfaces. Phys Fluids, 22, 051703(2010).

    [27] J B Fenn, M Mann, C K Meng, S F Wong, C M Whitehouse. Electrospray ionization for mass spectrometry of large biomolecules. Science, 246, 64-71(1989).

    [28] G I Taylor. Disintegration of water drops in an electric field. Proc Roy Soc A Math Phys Eng Sci, 280, 383-397(1964).

    [29] M Cloupeau, B Prunet-Foch. Electrostatic spraying of liquids: Main functioning modes. J Electrostat, 25, 165-184(1990).

    [30] J F De La Mora. The fluid dynamics of Taylor cones. Annu Rev Fluid Mech, 39, 217-243(2007).

    [31] A Gomez, W W Deng. Fundamentals of cone-jet electrospray. In Aerosol Measurement: Principles, Techniques, and Applications 3rd ed (Wiley, 2011)(2011).

    [32] J F De La Mora, J Navascues, F Fernandez, J Rosell-Llompart. Generation of submicron monodisperse aerosols in electrosprays. J Aerosol Sci, 21, S673-S676(1990).

    [33] K Q Tang, A Gomez. On the structure of an electrostatic spray of monodisperse droplets. Phys Fluids, 6, 2317-2332(1994).

    [34] S S Sazhin. Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science, 32, 162-214(2005).

    [35] X Y Zhao, D E Johnston, J C Rodriguez, Z Tao, B X Mi et al. Nanostructured semiconducting polymer films with enhanced crystallinity and reorientation of crystalline domains by electrospray deposition. Macromol Mater Eng, 302, 1700090(2017).

    [36] T J Zhu, C Li, W W Yang, X Y Zhao, X L Wang et al. Electrospray dense suspensions of TiO2 nanoparticles for dye sensitized solar cells. Aerosol Sci Technol, 47, 1302-1309(2013).

    [37] J Tang, A Gomez. Controlled mesoporous film formation from the deposition of electrosprayed nanoparticles. Aerosol Sci Technol, 51, 755-765(2017).

    [38] A M Gañán-Calvo, J M López-Herrera, M A Herrada, A Ramos, J M Montanero. Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J Aerosol Sci, 125, 32-56(2018).

    [39] R P A Hartman, D J Brunner, D M A Camelot, J C M Marijnissen, B Scarlett. Jet break-up in electrohydrodynamic atomization in the cone-jet mode. J Aerosol Sci, 31, 65-95(2000).

    [40] S E Park, S Kim, K Kim, H E Joe, B Jung et al. Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods. Nanoscale, 4, 7773-7779(2012).

    [41] B Abramzon, W A Sirignano. Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transfer, 32, 1605-1618(1989).

    [42] W W Yang, B Lojewski, Y Wei, W W Deng. Interactions and deposition patterns of multiplexed electrosprays. J Aerosol Sci, 46, 20-33(2012).

    [43] W W Deng, J F Klemic, X H Li, M A Reed, A Gomez. Increase of electrospray throughput using multiplexed microfabricated sources for the scalable generation of monodisperse droplets. J Aerosol Sci, 37, 696-714(2006).

    [44] J S Kim, W S Chung, K Kim, Y K Dong, K J Paeng et al. Solar cells: performance optimization of polymer solar cells using electrostatically sprayed photoactive layers (Adv. Funct. Mater. 20/2010). Adv Funct Mater, 20, 3402(2010).

    [45] B Lingam, K R Babu, S P Tewari, G Vaitheeswaran, S Lebègue. Quasiparticle band structure and optical properties of NH3BH3. Phys Status Solidi A, 5, 10-12(2011).

    [46] X Y Zhao, X Z Wang, S L Lim, D C Qi, R Wang et al. Enhancement of the performance of organic solar cells by electrospray deposition with optimal solvent system. Solar Energy Mater Solar Cells, 121, 119-125(2014).

    [47] Y Y Jiang, C C Wu, L R Li, K Wang, Z Tao et al. All electrospray printed perovskite solar cells. Nano Energy, 53, 440-448(2018).

    [48] F Gao, H Yi, L H Qi, R Qiao, W W Deng. Weakly charged droplets fundamentally change impact dynamics on flat surfaces. Soft Matter, 15, 5548-5553(2019).

    [49] R T Kelly, J S Page, R Zhao, W J Qian, H M Mottaz et al. Capillary-based multi nanoelectrospray emitters: improvements in ion transmission efficiency and implementation with capillary reversed-phase LC-ESI-MS. Anal Chem, 80, 143-149(2008).

    [50] M H Duby, W W Deng, K Kim, T Gomez, A Gomez. Stabilization of monodisperse electrosprays in the multi-jet mode via electric field enhancement. J Aerosol Sci, 37, 306-322(2006).

    [51] W W Deng, C M Waits, B Morgan, A Gomez. Compact multiplexing of monodisperse electrosprays. J Aerosol Sci, 40, 907-918(2009).

    [52] H Q Hu, S Rangou, M Kim, P Gopalan, V Filiz et al. Continuous equilibrated growth of ordered block copolymer thin films by electrospray deposition. ACS Nano, 7, 2960-2970(2013).

    [53] P Lozano, M Martínez-Sánchez. On the dynamic response of externally wetted ionic liquid ion sources. J Phys D: Appl Phys, 38, 2371-2377(2005).

    [54] N Rebollo-Muñnoz, J M Montanero, A M Gañán-Calvo. On the use of hypodermic needles in electrospray. EPJ Web Conf, 45, 01128(2013).

    [55] G Sorensen. Ion bombardment of electrosprayed coatings: an alternative to reactive sputtering?. Surf Coat Technol, 112, 221-225(1999).

    [56] A Sen, J Darabi, D Knapp, J Liu. Modeling and characterization of a carbon fiber emitter for electrospray ionization. J Micromech Microeng, 16, 620-630(2006).

    [57] H Kallman, M Pope. Photovoltaic effect in organic crystals. J Chem Phys, 30, 585-586(1959).

    [58] G Yu, J Gao, J C Hummelen, F Wudl, A J Heeger. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 270, 1789-1791(1995).

    [59] A J Heeger. Semiconducting polymers: the third generation. Chem Soc Rev, 39, 2354-2371(2010).

    [60] Y Y Liang, Z Xu, J B Xia, S T Tsai, Y Wu et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 22, E135-E138(2010).

    [61] H Sirringhaus, P J Brown, R H Friend, M M Nielsen, K Bechgaard et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 401, 685-688(1999).

    [62] Y Kim, S Cook, S M Tuladhar, S A Choulis, J Nelson et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat Mat, 5, 197-203(2006).

    [63] H Hlaing, X H Lu, T Hofmann, K G Yager, C T Black et al. Nanoimprint-induced molecular orientation in semiconducting polymer nanostructures. ACS Nano, 5, 7532-7538(2011).

    [64] D E Johnston, K G Yager, H Hlaing, X H Lu, B M Ocko et al. Nanostructured surfaces frustrate polymer semiconductor molecular orientation. ACS Nano, 8, 243-249(2014).

    [65] T Fukuda, K Suzuki, N Yoshimoto, Y J Liao. Controlled donor-accepter ratio for application of organic photovoltaic cells by alternative intermittent electrospray co-deposition. Org Electron, 33, 32-39(2016).

    [66] T Fukuda, A Toda, K Takahira, K Suzuki, Y J Liao et al. Molecular ordering of spin-coated and electrosprayed P3HT: PCBM thin films and their applications to photovoltaic cell. Thin Solid Films, 612, 373-380(2016).

    [67] T Fukuda, A Toda, K Takahira, D Kuzuhara, N Yoshimoto. Improved performance of organic photovoltaic cells with PTB7-Th: PC71 BM by optimized solvent evaporation time in electrospray deposition. Org Electron, 48, 96-105(2017).

    [68] K Takahira, A Toda, K Suzuki, T Fukuda. Highly efficient organic photovoltaic cells fabricated by electrospray deposition using a non-halogenated solution. Phys Status Solidi A, 214, 1600536(2017).

    [69] K K Khanum, J Anakkavoor Krishnaswamy, P C Ramamurthy. Design and fabrication of photonic structured organic solar cells by electrospraying. J Phys Chem C, 121, 8531-8540(2017).

    [70] A Kimoto, H Takaku, H Hayakawa, M Koseki, R Ishihama et al. Multilayer organic photovoltaic devices fabricated by electrospray deposition technique and the role of the interlayer. Thin Solid Films, 636, 302-306(2017).

    [71] S C Hong, G Lee, K Ha, J Yoon, N Ahn et al. Precise morphology control and continuous fabrication of perovskite solar cells using droplet-controllable electrospray coating system. ACS Appl Mater Interfaces, 9, 7879-7884(2017).

    [72] P Y Lin, Y Y Chen, T F Guo, Y S Fu, L C Lai et al. Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. RSC Adv, 7, 10985-10991(2017).

    [73] S Kavadiya, D M Niedzwiedzki, S Huang, P Biswas. Electrospray-assisted fabrication of moisture-resistant and highly stable perovskite solar cells at ambient conditions. Adv Energy Mater, 7, 1700210(2017).

    [74] K C Hsu, C H Lee, T F Guo, T H Chen, T H Fang et al. Improvement efficiency of perovskite solar cells by hybrid electrospray and vapor-assisted solution technology. Org Electron, 57, 221-225(2018).

    [75] S Han, H Kim, S Lee, C Kim. Efficient planar-heterojunction perovskite solar cells fabricated by high-throughput sheath-gas-assisted electrospray. ACS Appl Mater Interfaces, 10, 7281-7288(2018).

    [76] Y H Deng, X P Zheng, Y Bai, Q Wang, J J Zhao et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat Energy, 3, 560-566(2018).

    [77] M He, B Li, X Cui, B B Jiang, Y J He et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nat Commun, 8, 16045(2017).

    [78] J B Li, R Munir, Y Y Fan, T Q Niu, Y C Liu et al. Phase transition control for high-performance blade-coated perovskite solar cells. Joule, 2, 1313-1330(2018).

    [79] K Hwang, Y S Jung, Y J Heo, F H Scholes, S E Watkins et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv Mater, 27, 1241-1247(2015).

    [80] Z B Yang, C C Chueh, F Zuo, J H Kim, P W Liang et al. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv Energy Mater, 5, 1500328(2015).

    [81] T S Qin, W C Huang, J E Kim, D Vak, C Forsyth et al. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 31, 210-217(2017).

    [82] A Y Mei, X Li, L F Liu, Z L Ku, T F Liu et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345, 295-298(2014).

    [83] J W Lee, S I Na, S S Kim. Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting. J Power Sources, 339, 33-40(2017).

    [84] Y S Jung, K Hwang, Y J Heo, J E Kim, D Lee et al. One-step printable perovskite films fabricated under ambient conditions for efficient and reproducible solar cells. ACS Appl Mater Interfaces, 9, 27832-27838(2017).

    [85] A Bashir, S Shukla, J H Lew, S Shukla, A Bruno et al. Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. Nanoscale, 10, 2341-2350(2018).

    [86] B O'Regan, M Grsätzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737-740(1991).

    [87] U Bach, D Lupo, P Comte, J E Moser, F Weissörtel et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395, 583-585(1998).

    [88] A Hagfeldt, M Grätzel. Molecular photovoltaics. Acc Chem Res, 33, 269-277(2000).

    [89] M Grätzel. Photoelectrochemical cells. Nature, 414, 338-344(2001).

    [90] M Grätzel. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A: Chem, 164, 3-14(2004).

    [91] G G Sonai, A Tiihonen, K Miettunen, P D Lund, A F Nogueira. Long-term stability of dye-sensitized solar cells assembled with cobalt polymer gel electrolyte. J Phys Chem C, 121, 17577-17585(2017).

    [92] K Kakiage, Y Aoyama, T Yano, K Oya, J I Fujisawa et al. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun, 51, 15894-15897(2015).

    [93] S Widodo, G Wiranto, M N Hidayat. Fabrication of dye sensitized solar cells with spray coated Carbon Nano Tube (CNT) based counter electrodes. Energy Procedia, 68, 37-44(2015).

    [94] F Kabir, S N Sakib, N Matin. Stability study of natural green dye based DSSC. Optik, 181, 458-464(2019).

    [95] S Ito, T N Murakami, P Comte, P Liska, C Grätzel et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films, 516, 4613-4619(2008).

    [96] Y J Kim, M H Lee, H J Kim, G Lim, Y S Choi et al. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv Mater, 21, 3668-3673(2009).

    [97] M Fujimoto, T Kado, W Takashima, K Kaneto, S Hayase. Dye-sensitized solar cells fabricated by electrospray coating using TiO2 nanocrystal dispersion solution. J Electrochem Soc, 153, A826-A829(2006).

    [98] Y Z Zhang, L H Wu, E Q Xie, H G Duan, W H Han et al. A simple method to prepare uniform-size nanoparticle TiO2 electrodes for dye-sensitized solar cells. J Power Sources, 189, 1256-1263(2009).

    [99] P Sudhagar, K Asokan, J H Jung, Y G Lee, S Park et al. Efficient performance of electrostatic spray-deposited TiO2 blocking layers in dye-sensitized solar cells after swift heavy ion beam irradiation. Nanoscale Res Lett, 6, 30(2011).

    [100] D Hwang, H Lee, S Y Jang, S M Jo, D Kim et al. Electrospray preparation of hierarchically-structured mesoporous TiO2 spheres for use in highly efficient dye-sensitized solar cells. ACS Appl Mater Interfaces, 3, 2719-2725(2011).

    [101] F Z Huang, D H Chen, L X Zhang, R A Caruso, Y B Cheng. Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells. Adv Funct Mater, 20, 1301-1305(2010).

    [102] D H Chen, F Z Huang, Y B Cheng, R A Caruso. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv Mater, 21, 2206-2210(2009).

    [103] T P Chou, Q Zhang, G E Fryxell, G Z Cao. Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv Mater, 19, 2588-2592(2007).

    [104] X Sheng, Y Zhao, J Zhai, L Jiang, D Zhu. Electro-hydrodynamic fabrication of ZnO-based dye sensitized solar cells. Appl Phys A, 87, 715-719(2007).

    [105] J T Hong, H Seo, D G Lee, J J Jang, T P An et al. A nano-porous TiO2 thin film coating method for dye sensitized solar cells (DSSCs) using electrostatic spraying with dye solution. J Electrostat, 68, 205-211(2010).

    [106] C J Hogan, P Biswas. Porous film deposition by electrohydrodynamic atomization of nanoparticle sols. Aerosol Sci Technol, 42, 75-85(2008).

    [107] L B Modesto-Lopez, P Biswas. Role of the effective electrical conductivity of nanosuspensions in the generation of TiO2 agglomerates with electrospray. J Aerosol Sci, 41, 790-804(2010).

    [108] J Tang, A Gomez. Control of the mesoporous structure of dye-sensitized solar cells with electrospray deposition. J Mater Chem A, 3, 7830-7839(2015).

    [109] B P Chan, K W Leong. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J, 17, 467-479(2008).

    [110] V E Bochenkov, G B Sergeev. Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. In Metal Oxide Nanostructures and Their Applications (American Scientific Publishers, 2010)(2010).

    [111] J Tang, W Liu, H L Wang, A Gomez. High performance metal oxide-graphene hybrid nanomaterials synthesized via opposite-polarity electrosprays. Adv Mater, 28, 10298-10303(2016).

    [112] X M Li, X G Hao, A Abudula, G Q Guan. Nanostructured catalysts for electrochemical water splitting: current state and prospects. J Mater Chem A, 4, 11973-12000(2016).

    [113] M V Kovalenko, L Protesescu, M I Bodnarchuk. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 358, 745-750(2017).

    Xinyan Zhao, Weiwei Deng. Printing photovoltaics by electrospray[J]. Opto-Electronic Advances, 2020, 3(6): 190038-1
    Download Citation