• Laser & Optoelectronics Progress
  • Vol. 54, Issue 12, 123002 (2017)
Zeng Shuai, Kuang Runyuan*, and Chen Yanbing
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.123002 Cite this Article Set citation alerts
    Zeng Shuai, Kuang Runyuan, Chen Yanbing. Hyperspectral Characteristic Band Selection and Spectral Classification of Five Typical Vegetation in Poyang Lake[J]. Laser & Optoelectronics Progress, 2017, 54(12): 123002 Copy Citation Text show less
    References

    [1] Yu Yang, Zhao Nanjing, Wang Yin, et al. Research on the characteristics of lead contained in lead slime by laser-induced breakdown spectroscopy[J]. Chinese J Lasers, 2014, 41(7): 0715001.

    [2] Guo Yulong, Li Yunmei, Wang Qiao, et al. A new water chlorophyll-a index and analysis of its application potential[J]. Acta Optica Sinica, 2015, 35(11): 1101003.

    [3] Zhang Dong, Tashpolat·Tiyip, Zhang Fei, et al. Effect of fractional differential algorithm on hyperspectral data of saline soil[J]. Acta Optica Sinica, 2016, 36(3): 0330002.

    [4] Tong Q X, Xue Y Q, Zhang L F. Process in hyperspectral remote sensing science and technology in China over the past three decades[J]. IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 2014, 7(1): 70-91.

    [5] Chen Yonggang, Ding Lixia, Ge Hongli, et al. Hyperspectral feature band selection based on mean confidence interval and tree species discrimination[J]. Spectroscopy and Spectral Analysis, 2011, 31(9): 2462-2466.

    [6] Liu Xuehua, Sun Yan, Wu Yan. Reduction of hyperspectral dimensions and construction of discriminating models for identifying wetland plant species[J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 459-464.

    [7] Dian Y Y, Fang S H, Le Y, et al. Comparison of the difference classifiers in vegetation species discrimination using hyperspectral reflectance data[J]. Journal of the Indian Society of Remote Sensing, 2014, 42(1): 61-72.

    [8] Kumar M N, Seshasai M V R, Prasad K S V, et al. A new hybid spectral similarity measure for discrimination among Vigna species[J]. International Journal of Remote Sensing, 2011, 32(14): 4041-4053.

    [9] Kong X B, Shu N, Tao J B, et al. A new spectral similarity measure based on multiple features integration[J]. Spectroscopy and Spectral Analysis, 2011, 31(8): 2166-2170.

    [10] Zhang Junzhe, Zhu Wenquan, Zheng Zhoutao, et al. Comparative study on similarity measures of hyperspectral remote sensing data[J]. Science of Surveying and Mapping, 2013, 38(6): 33-36.

    [13] Dundar M M, Landgrebe D A. Toward an optimal supervised classifier for the analysis of hyperspectral data[J]. IEEE Transaction on Geoscience and Remote Sensing, 2004, 42(1): 271-277.

    [14] Jain A K, Duin R, Mao J C. Statistical pattern recognition: a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.

    [15] Lin Haijun, Zhang Huifen, Gao Yaqi, et al. Mahalanobis distance based hyperspectral characteristic discrimination of leaves of different desert tree species[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3358-3362.

    [16] Kruse F A, Lefkoff A B, Boardman J W, et al. The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data[J]. Remote Sensing of Environment, 1993, 44(2/3): 145-163.

    [17] Vandermeer F, Bakker W. Cross correlogram spectral matching: application to surface mineralogical mapping by using AVIRIS data from Cuprite, Nevada[J]. Remote Sensing of Environment, 1997, 61(3): 371-382.

    [18] Sun Yanli, Zhang Xia, Shuai Tong, et al. Radiometric normalization of hyperspectral satellite images with spectral angle distance and Euclidean distance[J]. Journal of Remote Sensing, 2015, 19(4): 618-626.

    Zeng Shuai, Kuang Runyuan, Chen Yanbing. Hyperspectral Characteristic Band Selection and Spectral Classification of Five Typical Vegetation in Poyang Lake[J]. Laser & Optoelectronics Progress, 2017, 54(12): 123002
    Download Citation