• Photonics Research
  • Vol. 9, Issue 2, B9 (2021)
Xingyu Wang1、2, Tianyi Wu2, Chen Dong2、*, Haonan Zhu1, Zhuodan Zhu3, and Shanghong Zhao1
Author Affiliations
  • 1School of Information and Navigation, Air Force Engineering University, Xi’an 710077, China
  • 2Information and Communication College, National University of Defense Technology, Xi’an 710006, China
  • 3No. 94782 Unit of PLA, Hangzhou 310021, China
  • show less
    DOI: 10.1364/PRJ.409645 Cite this Article Set citation alerts
    Xingyu Wang, Tianyi Wu, Chen Dong, Haonan Zhu, Zhuodan Zhu, Shanghong Zhao. Integrating deep learning to achieve phase compensation for free-space orbital-angular-momentum-encoded quantum key distribution under atmospheric turbulence[J]. Photonics Research, 2021, 9(2): B9 Copy Citation Text show less
    References

    [1] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [2] C. H. Bennett, G. Brassard, N. D. Mermin. Quantum cryptography without Bell’s theorem. Phys. Rev. Lett., 68, 557-559(1992).

    [3] D. Mayers. Unconditional security in quantum cryptography. J. ACM, 48, 351-406(2001).

    [4] W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, C. M. Simmons. Practical free-space quantum key distribution over 1 km. Phys. Rev. Lett., 81, 3283-3286(1998).

    [5] C. Z. Peng, T. Yang, X. H. Bao, J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, J. W. Pan. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett., 94, 150501(2005).

    [6] J. Yin, J. G. Ren, H. Lu, Y. Cao, H. L. Yong, Y. P. Wu, C. Liu, S. K. Liao, F. Zhou, Y. Jiang, X. D. Cai, P. Xu, G. S. Pan, J. J. Jia, Y. M. Huang, H. Yin, J. Y. Wang, Y. A. Chen, C. Z. Peng, J. W. Pan. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 488, 185-188(2012).

    [7] T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, H. Weinfurter. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett., 98, 010504(2007).

    [8] S. K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li, F.-Z. Li, X.-W. Chen, L.-H. Sun, J.-J. Jia, J.-C. Wu, X.-J. Jiang, J.-F. Wang, Y.-M. Huang, Q. Wang, Y.-L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y.-A. Chen, N.-L. Liu, X.-B. Wang, Z.-C. Zhu, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Y. Wang, J.-W. Pan. Satellite-to-ground quantum key distribution. Nature, 549, 43-47(2017).

    [9] A. Carrasco-Casado, H. Kunimori, H. Takenaka, T. Kubo-Oka, M. Akioka, T. Fuse, Y. Koyama, D. Kolev, Y. Munemasa, M. Toyoshima. LEO-to-ground polarization measurements aiming for space QKD using small optical transponder (SOTA). Opt. Express, 24, 12254-12266(2016).

    [10] G. Vallone, D. Daniele, M. Tomasin, M. Schiavon, F. Vedovato, D. Bacco, S. Gaiarin, G. Bianco, V. Luceri, P. Villoresi. Satellite quantum communication towards GEO distances. Proc. SPIE, 9900, 99000J(2016).

    [11] C. Zhou, W. S. Bao, W. Chen, H. W. Li. Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources. Phys. Rev. A, 88, 052333(2013).

    [12] L. Wang, S. M. Zhao, L. Y. Gong, W. W. Cheng. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum. Chin. Phys. B, 24, 120307(2015).

    [13] M. Mafu, A. Dudley, S. Goyal, D. Giovannini, M. McLaren, M. J. Padgett, T. Konrad, F. Petruccione, N. Lütkenhaus, A. Forbes. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A, 88, 032305(2013).

    [14] S. Zhao, W. Li, Y. Shen, Y. Yu, X. Han, H. Zeng, M. Cai, T. Qian, S. Wang, Z. Wang, Y. Xiao, Y. Gu. Experimental investigation of quantum key distribution over a water channel. Appl. Opt., 58, 3902-3907(2019).

    [15] Q. H. Lai, M. X. Luo, C. Zhan, J. Pieprzyk, M. A. Orgun. An improved coding method of quantum key distribution protocol based on Fibonacci-valued OAM entangled states. Phys. Lett. A, 381, 2922-2926(2017).

    [16] M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, A. Zeilinger. Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. USA, 113, 13648-13653(2016).

    [17] J. L. Liu, C. Wang. Six-State quantum key distribution using photons with orbital angular momentum. Phys. Rev. A, 27, 110303(2010).

    [18] X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, D. Fan. Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications. IEEE Photon. J., 9, 7903811(2017).

    [19] J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [20] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, S. Ashrafi. Optical communications using orbital angular momentum beams. Adv. Opt. Photon., 7, 66-106(2015).

    [21] Y. Zhang, P. Wang, L. Guo, W. Wang, H. Tian. Performance analysis of an OAM multiplexing-based MIMO FSO system over atmospheric turbulence using space-time coding with channel estimation. Opt. Express, 25, 19995-20011(2017).

    [22] M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, A. Zeilinger. Communication with spatially modulated light through turbulent air across Vienna. New J. Phys., 16, 113028(2014).

    [23] M. Malik, M. O’sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. Lavery, M. J. Padgett, R. W. Boyd. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt. Express, 20, 13195-13200(2012).

    [24] F. Bouchard, K. Heshami, D. England, R. Fickler, R. W. Boyd, B.-G. Englert, L. L. Sánchez-Soto, E. Karimi. Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons. Quantum, 2, 111(2018).

    [25] G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, P. Villoresi. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett., 113, 060503(2014).

    [26] J. P. Zhao, Y. Y. Zhou, B. Braverman, C. Liu, K. Pang, N. Steinhoff, G. Tyler, A. Willner, R. Boyd. Performance of real-time adaptive optics compensation in a turbulent channel with high-dimensional spatial-mode encoding. Opt. Express, 28, 15376-15391(2020).

    [27] A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R. Boyd, E. Karimi. High-dimensional intracity quantum cryptography with structured photons. Optica, 4, 1006-1010(2017).

    [28] C. Daniele, D. Bacco, B. D. Lio, K. Ingerslev, L. K. Oxenløwe. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys. Rev. Appl., 11, 064058(2019).

    [29] C. Daniele, B. D. Lio, D. Bacco, L. K. Oxenløwe. High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol., 2, 1900038(2019).

    [30] F. Bouchard, A. Sit, F. Hufnagel, A. Abbas, Y. Zhang, K. Heshami, R. Fickler, C. Marquardt, G. Leuchs, R. W. Boyd, E. Karimi. Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express, 26, 22563-22573(2018).

    [31] F. Hufnagel, A. Sit, F. Grenapin, F. Bouchard, K. Heshami, D. England, Y. Zhang, B. J. Sussman, R. W. Boyd, G. Leuchs, E. Karimi. Characterization of an underwater channel for quantum communications in the Ottawa River. Opt. Express, 27, 26346-26354(2019).

    [32] N. D. Leonhard, V.-N. Shatokhin, A. Buchleitner. Universal entanglement decay of photonic- orbital-angular-momentum qubit states in atmospheric turbulence. Phys. Rev. A, 91, 012345(2015).

    [33] Y. X. Ren, H. Huang, G. D. Xie, N. Ahmed, Y. Yan, B. I. Erkmen, N. Chandrasekaran, M. P. J. Lavery, N. K. Steinhoff, M. Tur, S. Dolinar, M. Neifeld, M. J. Padgett, R. W. Boyd, J. H. Shapiro, A. E. Willner. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. Opt. Lett., 38, 4062-4065(2013).

    [34] X. Y. Wang, S. H. Zhao, C. Dong, Z. D. Zhu, W. Y. Gu. Orbital angular momentum-encoded measurement device independent quantum key distribution under atmospheric turbulence. Quantum Inf. Process., 18, 304(2019).

    [35] C. Paterson. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett., 94, 153901(2005).

    [36] G. A. Tyler, R. W. Boyd. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt. Lett., 34, 142-144(2009).

    [37] M. Li, M. Cvijetic, Y. Takashima, Z. Yu. Evaluation of channel capacities of OAM-based FSO link with real-time wavefront correction by adaptive optics. Opt. Express, 22, 31337-31346(2014).

    [38] X. Yin, H. Chang, X. Cui, J. Ma, Y. Wang, G. Wu, L. Zhang, X. Xin. Adaptive turbulence compensation with a hybrid input-output algorithm in orbital angular momentum-based free-space optical communication. Appl. Opt., 57, 7644-7650(2018).

    [39] H. Chang, X. Yin, X. Cui, X. Chen, Y. Su, J. Ma, Y. Wang, L. Zhang, X. Xin. Performance analysis of adaptive optics with a phase retrieval algorithm in orbital-angular-momentum-based oceanic turbulence links. Appl. Opt., 58, 6085-6090(2019).

    [40] K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778(2016).

    [41] Y. Zhai, S. Fu, J. Zhang, X. Liu, H. Zhou, C. Gao. Turbulence aberration correction for vector vortex beams using deep neural networks on experimental data. Opt. Express, 28, 7515-7527(2020).

    [42] W. Y. Wang, H.-K. Lo. Machine learning for optimal parameter prediction in quantum key distribution. Phys. Rev. A, 100, 062334(2019).

    [43] W. Q. Liu, P. Huang, J. Y. Peng, J. P. Fan, G.-H. Zeng. Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution. Phys. Rev. A, 97, 022316(2018).

    [44] P. Chaiwongkhot, K. B. Kuntz, Y. B. Zhang, A. Q. Huang, J. P. Bourgoin, S. H. Sajeed, N. Lütkenhaus, T. Jennewein, V. Makarov. Eavesdropper’s ability to attack a free-space quantum-key-distribution receiver in atmospheric turbulence. Phys. Rev. A, 99, 062315(2019).

    [45] Z. Q. Wang, R. Malane, B. Burnett. Satellite-to-Earth quantum key distribution via orbital angular momentum. Phys. Rev. Appl., 14, 064031(2020).

    [46] J. Liu, P. Wang, X. Zhang, Y. He, X. Zhou, H. Ye, Y. Li, S. Xu, S. Chen, D. Fan. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Opt. Express, 27, 16671-16688(2019).

    [47] L. C. Andrews, R. L. Phillips, C. Y. Hopen, M. A. Al-Habash. Theory of optical scintillation. J. Opt. Soc. Am. A, 16, 1417-1429(1999).

    [48] V. Badrinarayanan, A. Kendall, R. Cipolla. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern. Anal., 39, 2481-2495(2017).

    [49] F. C. Chen. Back-propagation neural networks for nonlinear self-tuning adaptive control. IEEE Contr. Syst. Mag., 10, 44-48(1990).

    [50] S. Ruder. An overview of gradient descent optimization algorithms(2016).

    [51] C. Liu, K. Pang, Z. Zhao, P. Liao, R. Zhang, H. Song, Y. Cao, J. Du, L. Li, H. Song, Y. Ren, G. Xie, Y. Zhao, J. Zhao, S. M. H. Rafsanjani, A. N. Willner, J. H. Shapiro, R. W. Boyd, M. Tur, A. E. Willner. Single-end adaptive optics compensation for emulated turbulence in a bi-directional 10-Mbit/s per channel free-space quantum communication link using orbital-angular-momentum encoding. Research, 2019, 8326701(2019).

    [52] D. Rosenberg, C. Peterson, J. Harrington, P. Rice, N. Dallmann, K. Tyagi, K. McCabe, S. Nam, B. Baek, R. Hadeld, R. J. Hughes, J. E. Nordholt. Practical long-distance quantum key distribution system using decoy levels. New J. Phys., 11, 045009(2009).

    [53] R. Neo, M. Goodwin, J. Zheng, J. Lawrence, S. Leon-Saval, J. Bland-Hawthorn, G. Molina-Terriza. Measurement and limitations of optical orbital angular momentum through corrected atmospheric turbulence. Opt. Express, 24, 2919-2930(2016).

    [54] V. N. Mahajan. Strehl ratio for primary aberrations in terms of their aberration variance. J. Opt. Soc. Am., 73, 860-861(1983).

    [55] H. K. Lo, X. Ma, K. Chen. Decoy-state quantum key distribution. Phys. Rev. Lett., 94, 230504(2005).

    [56] D. Gottesman, H. K. Lo, N. Lutkenhaus, J. Preskill. Security of quantum key distribution with imperfect devices. Quant. Inf. Comp., 4, 325-360(2004).

    [57] W. Wang, F. Xu, H. K. Lo. Prefixed-threshold real-time selection method in free-space quantum key distribution. Phys. Rev. A, 97, 032337(2018).

    CLP Journals

    [1] Li Gao, Yang Chai, Darko Zibar, Zongfu Yu. Deep learning in photonics: introduction[J]. Photonics Research, 2021, 9(8): DLP1

    Xingyu Wang, Tianyi Wu, Chen Dong, Haonan Zhu, Zhuodan Zhu, Shanghong Zhao. Integrating deep learning to achieve phase compensation for free-space orbital-angular-momentum-encoded quantum key distribution under atmospheric turbulence[J]. Photonics Research, 2021, 9(2): B9
    Download Citation