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A high-dimensional quantum key distribution (QKD), which adopts degrees of freedom of the orbital angular
momentum (OAM) states, is beneficial to realize secure and high-speed QKD. However, the helical phase of a
vortex beam that carries OAM is sensitive to the atmospheric turbulence and easily distorted. In this paper, an
adaptive compensation method using deep learning technology is developed to improve the performance of
OAM-encoded QKD schemes. A convolutional neural network model is first trained to learn the mapping rela-
tionship of intensity profiles of inputs and the turbulent phase, and such mapping is used as feedback to control a
spatial light modulator to generate a phase screen to correct the distorted vortex beam. Then an OAM-encoded
QKD scheme with the capability of real-time phase correction is designed, in which the compensation module
only needs to extract the intensity distributions of the Gaussian probe beam and thus ensures that the information
encoded on OAM states would not be eavesdropped. The results show that our method can efficiently improve the
mode purity of the encoded OAM states and extend the secure distance for the involved QKD protocols in the
free-space channel, which is not limited to any specific QKD protocol. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.409645

1. INTRODUCTION

Quantum key distribution (QKD) can provide information
theoretic security to share keys between two distant parties
[1–3]. Currently, free-space quantum communication has pro-
gressed out of laboratories into real-world scenarios [4–8],
which paves the way towards global-scale and highly secure
quantum communication networks. However, most experi-
ments mainly rely on either the polarization [9,10] or phase
[11] of faint laser pulses as information carriers, where the
typical two-dimensional encoding scheme limits the capacity
of QKD systems due to an intrinsically bounded Hilbert
space.

Unlike the limited degree of freedom on polarization or
phase states, the orbital angular momentum (OAM) is a
high-dimensional encoding scheme for free-space QKD owing
to an infinite number of available OAM eigenstates in principle.
Recently, Refs. [12–15] implemented OAM-encoded QKD ex-
periments, and Ref. [16] realized OAM-based entanglement
distribution over a free-space optical (FSO) channel of more
than 143 km. Furthermore, OAM has been experimentally

demonstrated to be rotational invariant in the propagation di-
rection, which can remove the error caused by reference frame
misalignment [17]. These outstanding properties make OAM
states useful in both classical communication [18–22] and
high-dimensional quantum cryptography [23–31].

Nonetheless, it has been shown that the helical phase of a
vortex beam that carries OAM is sensitive to the transmission
environment and easily distorted [32–34]. Particularly in a free-
space optical channel, the atmospheric turbulence resulting
from the inhomogeneity of temperature and pressure in the
atmosphere will lead to severe wavefront distortion and coher-
ence destruction of the beam, which will directly increase the
crosstalk among the adjacent OAM modes [35,36] and further
influence the performance of the key rate in OAM-encoded
QKD schemes. Some meaningful methods, such as a post-se-
lection of the data or an increase in the mode spacing, which are
usually used in OAM-encoded QKD systems to improve the
stability of vortex beams against atmospheric turbulence, will
lead to a reduction of single-photon gain and coding dimen-
sion. In addition, an adaptive optics (AO) system is often
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applied in the classical OAM-encoded communications to im-
plement the phase compensation [37–39]. In such scenarios,
the compensation accuracy depends on the convergence of al-
gorithms used in AO systems, which requires relatively more
processing time. Especially for the satellite-based QKD system
with time-varying channel conditions, the AO systems may not
be fully adequate for an efficient turbulence correction.
Therefore, methods for quickly compensating for the turbu-
lence-distorted vortex beams are still urgently needed for
practically applying OAM-encoded QKD systems, especially
for satellite-based QKD applications with the limited link
durations.

In this paper, we propose a fast and efficient method to
adaptively compensate for the atmospheric turbulence effects,
which borrows the ideas of deep learning technology. Deep
learning technology is one of the most popular artificial intel-
ligence (AI) tools, and it shows extraordinary ability in image
recognition [40], optical fields [41], and even parameter opti-
mization for QKD [42,43]. In our proposed method, a con-
volutional neural network (CNN) model is first designed to
predict phase distortion information of atmospheric turbu-
lence. Then CNN combined with common setups is integrated
as an accurate and stable phase feedback module to generate a
phase screen [44–46] and correct the distorted vortex beam in
our free-space OAM-encoded QKD scheme. Our results show
that the compensation ability of our method is independent of
the turbulence intensity and only relies on the structure of the
CNN. In addition, our method can efficiently eliminate the
turbulence distortion and improve the mode purity of OAM
states compared to the OAM-encoded QKD scheme without
compensation, which extends the secure distance for the in-
volved QKD protocols in the free-space channel.

The organization of the article is as follows. In Section 2, a
CNN is presented for estimating phase distortion induced by
atmospheric turbulence. Then, in Section 3, we describe the
components and phase compensation operation of our free-
space OAM-encoded QKD scheme and show the improve-
ment of mode purity of OAM states at different situations

to verify the effectiveness of our method. In Section 4, we ana-
lyze the performance of the involved OAM-encoded QKD
scheme with the decoy-state method. The article is ended in
Section 5 with concluding remarks.

2. DEEP LEARNING FOR PHASE DISTORTION
PREDICTION IN THE TURBULENCE CHANNEL

When the vortex beam transmits through atmospheric turbu-
lence, the refractive index fluctuation causes the helical phase
wavefront distortion. In our work, the phase screen produced
by the Kolmogorov model [47], which has been widely used to
model the phase distortion information over the propagating
beam, is adopted to provide quantitative agreement with ana-
lytical results. In parallel, in order to simulate the atmospheric
turbulence using the random phase screen located in front of
the receiver, the propagation of the optical beam through the
atmospheric turbulence channel is usually divided into two
processes: vacuum transmission and phase modulation by
the turbulence phase screen (details in Appendix A).
Consequently, we first need to predict the phase screen contain-
ing the distortion information induced by the atmospheric tur-
bulence to perform the phase compensation for correcting the
distorted vortex beam.

The CNN is composed of multiple-layered structures built
from human-brain-like behavior (i.e., neurons), which can
learn data with multiple levels of abstraction and can extract
high-level abstract features. Based on the universal approxima-
tion theorem of a neural network, it is possible to infinitely
approximate any complicated but smooth functions on a de-
fined domain with a CNN. Stated differently, it can be applied
to accept new incoming data x and predict the corresponding ŷ
after adequate iterations. Here we designed a CNN to learn the
phase screen in our atmospheric turbulence prediction work as
illustrated in Fig. 1. The CNN structure consists of 15 learned
layers, including 12 convolutional layers and 3 deconvolutional
layers. The first convolutional layer uses 5 × 5 convolutional
kernels, and the other layers use 3 × 3 convolutional kernels.

 Maxpool layer

 Deconvolutional layer (kernels of size 3×3)+BN+ReLU 

 Convolutional layer (kernels of size 3×3)+BN+ReLU 

 Convolutional layer (kernels of size 5×5)+BN+ReLU 

256×256×32

128×128×64

64×64×64

32×32×64

32×32×128 32×32×128 32×32×128 32×32×64

32×32×64

64×64×64

128×128×32

256×256×16 256×256×16256×256×32

Fig. 1. CNN structure is used to predict the phase distortion in atmospheric turbulence channel. BN, batch normalization; ReLU, rectified linear
unit. We consider the encoder-decoder architecture of SegNet [48], since the prediction of the turbulent phase screen belongs to the pixel-by-pixel
prediction tasks. The encoder part includes the convolutional layers, pooling layers, etc., where the three maxpool layers make the resolution of the
feature map 8 times lower than that of the original image to perform nonlinear upsampling. In the decoder part, three deconvolutional layers are used
for upsampling by a factor of 8, so as to keep the size of the original input image consistent. Note that the CNN can be changed according to the
needs of specific prediction tasks.
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The CNN is trained with a set of training data. This set
contains N mappings �xTi , yTi �, i � 1, 2,…,N . Specifically,
yTi is a gray image of the random phase screen produced by
the Kolmogorov model in different turbulence intensities,
and the input xTi represents the two gray images, i.e., the in-
tensity distribution of the Gaussian probe beam (GPB) affected
by turbulence and that without turbulence. Namely, the net-
work can analyze distortion information in the form of images,
which can automatically find the characterization of turbulence
to generate a predicted phase screen for the subsequent phase
compensation.

In our CNN, a loss function mean squared error (MSE) is
defined on the output layer between the network’s calculated
outputs ŷi � f �xTi ,w� on a set of input data xTi , versus the set
of desired output yTi . The loss function MSE takes the form

MSE � 1

N

XN
i

�f �X ,w� − Y �2: (1)

Here we take a linear combination of inputs xTi , with weight w
and constant factor b, and the activation in each neuron can be
expressed as

l1�f �xTi ,w�, yi � � �yi − ŷi�2,
l2�f �xTi ,w�, yi � � ReLU�yi − ŷi − b�,
l3�f �xTi ,w�, yi � � ReLU�ŷi − yi − b�, (2)

where ReLU represents rectified linear unit function [i.e.,
max�0, x�]. We use the backpropagation algorithm [49] to
quickly compute the partial derivatives of the loss function
to the internal weight w in our CNN. Simultaneously, we ad-
just the weight w accordingly via the mini-batch gradient
descent (MBGD) algorithm [50] to minimize the loss function
and make ŷi approach yTi as much as possible. Finally, by sub-
stituting Eq. (2) into Eq. (1), the loss function MSE between
the estimated value and actual value of phase information is
calculated as follows:

MSE � 1

N

XN
i�1

fl 1�f �xTi ,w�, yi � � l 2�f �xTi ,w�, yi �

� l 3�f �xTi ,w�, yi �g

� 1

N

XN
i�1

��yi − ŷi�2 � ReLU�yi − ŷi − b�

� ReLU�ŷi − yi − b��: (3)

To achieve the trained CNN with a better generalization
ability to prevent overfitting, we use an amount of training data
to decrease the training error and the model complexity. Here
we use 84,000 GPB intensity images with specified turbulence
(i.e., the atmospheric refractive index structure constant C2

n)
ranging from �10−15, 10−13�, where the size of each image is
fixed at 256 × 256 and the gray values are normalized into
�0, 1�. In detail, 80,000 of them are used as the training data,
2000 are for the test data, and the remaining 2000 are for the
validation data. Figure 2 shows the loss function, where the
yellow and blue curves represent the loss value of the validation
data set and training data set, respectively. The loss value of the

validation data set is very close to that of training data set, and
both converge to be stable. After 400 iterations, the loss value of
the validation data set dropped to 0.03, which demonstrated
that the CNN at this time has a good performance of prediction
on turbulence and no overfitting occurred.

To reflect the trend of the loss curve more intuitively, Fig. 3
presents the phase images predicted by our CNN. From the
images, we can see that when the number of iterations is suf-
ficient, the predicted phase images are almost the same as the
real phase screens. In detail, the time required for the iterations
and processing is about 0.1 ms per image by using an i9-8950
CPU, which is much lower than the turbulent freezing time
(10 ms) [51], and thus it brings advantages to optimize the
performance of the OAM-encoded QKD scheme.

3. DEEP-LEARNING-BASED PHASE
COMPENSATION IN THE FREE-SPACE OAM-
ENCODED QKD SCHEME

We use the trained CNN for phase compensation in our
OAM-encoded QKD scheme. Figure 4 shows the schematic
diagram of an OAM-encoded QKD system with decoy-state
method, which contains the real-time atmospheric turbulence
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Fig. 2. Loss values of the validation data set and training data set
against the iterations of the algorithm. Here we dynamically tune the
learning rate at every 10 epochs. As the number of iterations increases,
the learning rate is gradually reduced in the process of approaching the
optimal solution, which shows drops of the loss value at 100 iterations.
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Fig. 3. Atmospheric turbulence phase graphs predicted by the
CNN different training iterations. The five images from left to right
represent the phase screens that are predicted by the validation data set
at 10, 100, 200, 300, and 400 iterations, and the rightmost one is the
one corresponding to the actual phase screen.
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compensation feedback at Bob’s side. In detail, at Alice’s side, a
Gaussian beam from a continuous-wave (CW) laser (operating at
1550 nm) is modulated into a pulse train with a 1 MHz repeti-
tion rate. A polarization beam splitter (PBS) is utilized to separate
the pulses into two subpulses, where the signal pulses are linearly
polarized in the x direction and the Gaussian probe pulses are
linearly polarized in the y direction. In practice, it is usually dif-
ficult to create a perfect vacuum state in the decoy-state QKD
experiments [52]. To realize the preparation of decoy states,
an intensity modulator is used to modulate the signal pulses into
different intensities. When the gain of a state is modulated to be
close (a finite extinction ratio below 30 dB) to the dark count rate
of our single-photon detector, the state will be regarded as the
“vacuum state.” After that, the signal pulses are converted by spa-
tial light modulator (SLMs) to carry OAM-encoded qubit signal
and then attenuated to a single-photon level signal by an attenu-
ator. By using a polarizing beam splitter (PBS), the quantum sig-
nals together with the Gaussian probe pulses are sent to Bob
through a simulated free-space channel.

In the free-space channel, the equivalent phase screens are
produced by SLM2 under the Kolmogorov model. At Bob’s
side, the compensation feedback is used to perform phase
compensation, among which SLM3 is only sensitive to x
polarization and a CCD is utilized to extract the intensity dis-
tribution of Gaussian probe pulses, which is used as the input
of a laptop PC with our CNN to predict a real-time atmos-
pheric turbulence phase screen. Thus, by getting a reversed
phase of the predicted phase screen on SLM3, the phase dis-
tortion of the only vortex pulses induced by atmospheric tur-
bulence can be restored. After these operations, the OAM
states are differentiated by employing the OAM sorter
[12], which consists of two static optical transformations
[unwrapper (R1) and phase corrector (R2) shown in
Fig. 4] and a lens. Finally, two single-photon detectors are
adopted to detect the results.

Note that the measurement probabilities of the desired
OAM state relate directly to the probabilities of obtaining cor-
rect or incorrect measurements of a transmitted “symbol.”
Therefore, for quantitative analysis of the correction effect in
terms of the measurement probability, we now need to compare
the mode purity of the OAM states before and after compen-
sation. The mode purity, which can be regarded as the normal-
ized power, is an important parameter describing the crosstalk
between different spatial modes. Specifically, we assume that
the receiver may measure a photon with the adjacent OAM
mode l 0 � l 0 � Δl ,Δl � 0, 1, 2,…. Thus, the mode purity
of OAM states can be estimated by taking ratio sΔ � PΔ∕P
between the power contained in each OAMmode and the total
power collected by the receiver. Without loss of generality, we
are only interested in the ensemble average of this quantity (i.e.,
hsΔi). Meanwhile, the OAM topological charge is set as l0 � 1.
For Kolmogorov turbulence theory, the mode purity of an
OAM state propagating through turbulence can be written
as [34]

hsΔi�
1

π

Z
1

0

r
R
d
r
R

Z
2π

0

exp

�
−6.88×22∕3

�
r
r0

�
5∕3

���� sin Δθ
2

����
5∕3

�

× exp�−iΔlΔθ�dΔθ, (4)

where r and θ are the radial coordinates and the azimuthal co-
ordinates, respectively; r0 is the Fried parameter [10]; and R is
the radius of a receiving aperture. By substituting Δl � 0 into
Eq. (4), we can get the mode purity of the receiving initial
OAM state l 0 � 1 without phase compensation:

hs0i�
1

π

Z
1

0

r
R
d
r
R

Z
2π

0

exp

�
−6.88×22∕3

�
r
r0

�
5∕3
����sinΔθ2

����
5∕3

�
dΔθ:

(5)

On the other hand, as discussed in Ref. [53], the effect of our
phase compensation feedback on OAM modes can also be
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Fig. 4. Schematic diagram of an OAM-encoded QKD with decoy-state method. CW laser, continuous-wave laser; GPB, Gaussian probe beam;
IM, intensity modulator; PBS, polarization beam splitter; SLM, spatial light modulator; ATT, attenuator; MR: mirror; CCD, charge-coupled device;
SPD, single-photon detector. At Alice’s side, the signal pulses (a CW laser beam modulated by an IM) are separated to two parts by a PBS. The x-
polarized GPB is modulated to produce a decoy state and encoded to load the spatially helical phase wavefront (or OAM) by an IM and SLM1,
respectively. The y-polarized GPB is then combined with the encoded OAM signal pulses by another PBS and transmitted together through tur-
bulence channel simulated by SLM2. Both the y-polarized GPB and the encoded OAM signal pulses will get phase distortion when transmitted
through the simulated turbulence channel. The phase distortion of the y-polarized GPB is detected by a CCD, and the corresponding reverse phase
screen will be produced by SLM3 to compensate for the phase distortion of the OAM-encoded signal pulses. After compensation, the OAM-
encoded signal pulses will be classified by the OAM sorter and received by different SPDs.
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described by the Strehl ratio [54], whose calculation is based on
the root mean square (RMS) of the residual wavefront aberra-
tion. In our case, the correction errors caused by the system are
all attributed to the accuracy of the algorithm in our CNN.
Therefore, combined with the performance indices of our
CNN, i.e., the MSE value χ � 1, the mode purity of the re-
ceiving initial OAM state with phase compensation can be
estimated:

hs0i0 � exp�−χ�: (6)

By numerical simulation, we present the mode purity of the
received OAM states with and without compensation in
Fig. 5. Here the beam wavelength λ � 1550 nm, the waist ra-
dius ω0 � 0.002 m, and the radius of receiving aperture
R � 0.075 m. The propagation distance Δz is set as 50 m,
and the atmospheric refractive index structure constant
C2

n � 10−14 m−2∕3. It is clear from Fig. 5 that the probabilities
for an OAM mode scattering to adjacent OAM modes are
greatly reduced, and the mode purity of the initial OAM state
l 0 � 1 is significantly improved from 32.5% to 97.1%.

To show the applicability of our method in various environ-
ments, we update the training data set for our CNN, where the
ranges of Δz and C2

n are set as �1 × 103, 1 × 105� m and [10−14,
10−13] m−2/3, respectively. In particular, we generate 70,000
GPB images every 10 km to form the final data set, i.e., a total
of 10 × 70;000 pieces of data set to train the CNN, where the
entire process from generating the data set to training the CNN
took about 6 h. After retraining, we show the mode purity of
OAM state l 0 � 1 at different situations. As shown in Fig. 6,
the mode purity can always be well recovered under a wide
range of parameter combinations of the intensity of turbulence
and the distance. Although the prediction effect under strong
turbulence or long distance is reduced (some pixels of the phase
screen are out of the gray value range, which leads to the re-
duction of effective information during the normalization pro-
cess), the mode purity values in different situations are still

improved to above 0.82. This is because the most key working
mechanism of the proposed CNN is to find the mapping rela-
tionship between inputs and outputs. Next, we will discuss the
key rate performance optimization of the OAM-encoded QKD
system.

4. PERFORMANCE OPTIMIZATION OF THE
FREE-SPACE OAM-ENCODED QKD

To further evaluate the performance of the deep-learning-based
phase compensation in improving the performance of the
OAM-encoded QKD scheme with the decoy-state method,
we discuss the secret key rate of the involved system. For sim-
plicity and generality, a two-dimensional OAM-QKD protocol
is discussed, where the OAM basis and superposition basis
(SUP) [12] are both used in the OAM-QKD protocol. In such
a decoy-state QKD, Alice randomly chooses an OAM basis
�j − l0ijl0i� or the SUP basis consisting of 1ffiffi

2
p �jl0i�

einπj − l0i�, where n � 0, 1 is the encoding bit.
Subsequently, Bob uses the results with OAM basis as the
key bits and the results with SUP basis as the testing bits,
and then they testify the security of the key distribution.
After error correction and privacy amplification, they can distill
a secure key.

We follow the decoy-state QKD theory from Ref. [55].
Using the Gottesman–Lo–Lutkenhaus–Preskill (GLLP) for-
mula [56], the secure key rate of decoy-state OAM-QKD in
the asymptotic case is given by

RGLLP � qf−f e�EOAM
μ �QOAM

μ h2�EOAM
μ �

� μe−μY OAM
1 �1 − h2�eSUP1 ��g, (7)

where q depends on the implementation (1/2 for the BB84
protocol due to the fact that half of the time Alice and Bob
disagree with the bases, and if one uses the efficient BB84 pro-
tocol, q ≈ 1); f e is the error correction inefficiency function, μ
is the intensity of the signal state, and h2 is the binary entropy
function. QOAM

μ and EOAM
μ are the total gain and error rate
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Fig. 5. Mode purity of the received OAM states with and without
compensation.

Fig. 6. Mode purity of the received OAM state in the different
situations.
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under the OAM basis, which can be theoretically calculated by
the standard channel model [57] using a transmittance of η.

Here the transmittance consists of the probabilities of
obtaining correct and incorrect initial OAM states. As discussed
in the below section, the probability of obtaining a correct state
can be expressed as

η0 � e−βLhs0i0, (8)

where β is the link attenuation coefficient. Correspondingly,
the other one, the transmission error probability, is η̄0 � 1−
η0. Thus, QOAM

μ can be calculated by

QOAM
μ � Y 0 � 1 − e−μ·ηηd : (9)

Similarly, the gain QSUP
μ in the SUP basis can also be estimated

in a similar way. Therefore, QSUP
μ � QOAM

μ . Note that, consid-
ering the errors are induced by misalignment and crosstalk be-
tween states, EOAM

μ in the OAM basis can be given as

EOAM
μ � e0Y 0 � t · ed �QOAM

μ − Y 0�
QOAM

μ
, (10)

where e0 is the error rate of the dark count, Y 0 is the background
count rate for the detector, and t � η̄0 is the crosstalk probabil-
ity. Similarly, the total errors ESUP

μ � EOAM
μ . By using decoy-

state technique to combine QOAM
μ and ESUP

μ for different
intensities, we can estimate the yield and the error rate of the
single-photon states Y OAM

1 and eSUP1 , which can be written as

Y OAM
1 � μ

μv − v2

�
QOAM

v ev − QOAM
μ eμ

v2

μ2
− eμ

μ2 − v2

e0μ2

�
,

(11)

eSUP1 � ESUP
v QSUP

v ev − e0Y 0

Y SUP
1 v

: (12)

For a fair comparison, we consider the same free-space channel
model proposed in Ref. [12], where the link attenuation β is set
to 1.38 × 10−4 (0.6 dB/km). The radius of receiving aperture Rr
is 7.5 cm, and the refraction structure constant C2

n is fixed at
10−14 m−2∕3. Other experimental parameters are taken directly
from Ref. [7] as listed in Table 1.

In Fig. 7, we compare the secret key rates versus propagation
distance for the situation with perfect phase compensation (i.e.,
χ � 1), the practical situation with phase compensation
feedback based on the learned CNN (i.e., the value of χ is

dependent on the transmission distance), and the situation
without phase compensation. As shown in Fig. 7, our method
offers a higher key rate than that of no compensation. Even if
the learned CNN is not perfect, the curves of the practical sit-
uation for the secret key rates are quite close to the perfect phase
compensation, where the situation of perfect phase compensa-
tion can be regarded as having no turbulence effects. This
means that our proposed method can be applied in the free-
space OAM-encoded QKD system to mitigate the turbulence
phase distortion.

5. CONCLUSIONS

In this work, considering that the helical phase wavefront in-
duced by the turbulence distortion has significant influence on
the performance of a free-space OAM-encoded QKD scheme
with the decoy-state method, we integrate the deep learning
technology to achieve phase compensation to optimize the in-
volved system. Here a well-trained CNN is designed to predict
an equivalent turbulent phase screen. Combined with the com-
monly used optical devices, fast and accurate phase compensa-
tion feedback can be achieved in our experimental scheme.
Furthermore, we use the mean-squared error (MSE) between
the predicted phase values and original phase values as a per-
formance index for assessing our system. The results show that
our scheme can effectively increase the key rate owing to im-
proving the mode purity of OAM states. Our proposed
work can provide an efficient solution for a free-space high-
dimensional QKD using OAM states.

Table 1. List of Parameters Used in the Simulations

Experimental Parameters Value

Radius of the receiving aperture Rr (cm) 7.5
Signal wavelength λ (nm) 1550
Refraction structure constant C2

n 10−14

Error rate of dark count e0 0.5
Misalignment error ed 0.015
Error correction inefficiency f e 1.22
Background dark count rate Y 0 3 × 10−6
Detection efficiency of the SPD ηd 50%
Finite size of data N 1014
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Fig. 7. Secret key rate performance of the OAM-encoded QKD ver-
sus propagation distance for different schemes. From top to bottom,
the curves represent the secret key rates in the perfect phase compen-
sation (red dotted line, χ � 1), the practical situation with the phase
compensation feedback supported by the learned CNN (blue solid
line, χ < 1), and the situation without phase compensation (green
dashed line, χ � 0). Note that we fix the signal and decoy intensities
to μ � 0.3, v � 0.05. Therefore, by scanning through the decoy-state
intensities and probabilities, the key rate can be further optimized.
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Note that, considering the time-varied atmospheric turbu-
lence, we use a charge-coupled device (CCD) to extract the
real-time turbulence distortions from the intensity distribution
of the Gaussian probe beam, which has no coding information.
By employing an SLM, a generated compensated phase screen
can be directly loaded on the OAM-encoded beams, and thus
there is no need to monitor the OAM-encoded signals. In ex-
periments, limited by the response speed of devices such as the
SLM, our experimental scheme may degrade the compensation
effect, but it can reduce the number of qubits used to estimate
channel conditions. Moreover, attacks due to the loopholes
of the phase compensation module can also be resisted. In ad-
dition, placing the phase compensation module on the
measurement side [i.e., measurement-device-independent
(MDI)-QKD protocol] can further ensure its safety.
Therefore, the experimental and security analysis of the
MDI-QKD system integrated with our method will be the
subject of our future studies.

APPENDIX A

When the vortex beam transmits through atmospheric turbu-
lence, the refractive index fluctuation causes helical phase wave-
front distortion. To simulate the atmospheric turbulence, we
model the atmospheric channel using a phase screen located
in front of the receiver. Thus, the propagation of the optical
beam through the atmospheric turbulence channel with a
length z � Δz can be divided into two processes: a vacuum
transmission channel with a length z and a phase modulation
process by the turbulence phase screen with a width Δz. The
phase screen method involves the filtering of a complex
Gaussian random field using the phase’s power spectral density
(PSD) function of the atmospheric turbulence, where the
phase’s PSD function Φ�kx , ky� can be calculated by the
Kolmogorov model:

Φ�kx , ky� � 2πk20Δz ⋅0.033C2
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x � k2y

q
−11∕3

, (A1)

where k0 is the wavenumber and kx and ky are the components
of k0 in the x-axis and y-axis directions, respectively. C2

n is the
refractive index structure constant, representing the turbulence
intensity. Subsequently, the variance of the phase spectrum can
be written as

σ2�kx , ky� �
�

2π

NΔL

�
2

Φ�kx , ky�, (A2)

where ΔL is the grid spacing. Therefore, using the fast Fourier
transform (FFT), realization of the corresponding phase screen
in the time domain can be represented as

ϕ�x, y� � FFT�C · σ�kx , ky��: (A3)

Here ϕ�x, y� is an N × N phase screen, and C is an N × N
dimensional complex Gaussian random number array with a
variance of 1. According to the diffraction angular spectrum
theory, when the vortex beam E�z, x, y� propagates in atmos-
pheric turbulence over Δz, the optical field at z � Δz can be
approximately described by

E�z � Δz, x, y� � FFT−1fexp�iAΔz�
· FFTfexp�iϕ�x, y��g⋅E�z, x, y�g, (A4)

where exp�iAΔz� is the transfer function of Fresnel
propagation.

In our work, we choose one of the vortex beam forms, i.e., a
Laguerre–Gaussian (LG) beam, making OAM eigenstates cor-
respond to the LG mode set. Here we use the intensity and
phase profiles of an LG01 beam after 500 m atmospheric
propagation with different C2

n. Here the beam waist radius
w0 is set as 0.002 m. The phase screen is set with a numerical
grid of N × N � 512 × 512 points and a grid spacing
of ΔL � 5 mm.
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