• Photonics Research
  • Vol. 7, Issue 11, 1249 (2019)
Carlos Doñate-Buendía, Mercedes Fernández-Alonso, Jesús Lancis, and Gladys Mínguez-Vega*
Author Affiliations
  • GROC·UJI, Institute of New Imaging Technologies, Universitat Jaume I, Avda. Sos Baynat sn, 12071 Castellón, Spain
  • show less
    DOI: 10.1364/PRJ.7.001249 Cite this Article Set citation alerts
    Carlos Doñate-Buendía, Mercedes Fernández-Alonso, Jesús Lancis, Gladys Mínguez-Vega. Overcoming the barrier of nanoparticle production by femtosecond laser ablation in liquids using simultaneous spatial and temporal focusing[J]. Photonics Research, 2019, 7(11): 1249 Copy Citation Text show less
    References

    [1] E. Serrano, G. Rus, J. García-Martínez. Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev., 13, 2373-2384(2009).

    [2] X. Qu, P. J. J. Alvarez, Q. Li. Applications of nanotechnology in water and wastewater treatment. Water Res., 47, 3931-3946(2013).

    [3] A. Kasaeian, A. T. Eshghi, M. Sameti. A review on the applications of nanofluids in solar energy systems. Renew. Sustain. Energy Rev., 43, 584-598(2015).

    [4] L. Dykman, N. Khlebtsov. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev., 41, 2256-2282(2012).

    [5] D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, D. Fragouli. Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment. ACS Nano, 12, 7690-7700(2018).

    [6] D. Zhang, B. Gökce, S. Barcikowski. Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev., 117, 3990-4103(2017).

    [7] J. Xiao, P. Liu, C. X. Wang, G. W. Yang. External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog. Mater. Sci., 87, 140-220(2017).

    [8] J. Zhang, J. Claverie, M. Chaker, D. Ma. Colloidal metal nanoparticles prepared by laser ablation and their applications. ChemPhysChem, 18, 986-1006(2017).

    [9] H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, W. Cai. Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct. Mater., 22, 1333-1353(2012).

    [10] G. Kalyuzhny, R. W. Murray. Ligand effects on optical properties of CdSe nanocrystals. J. Phys. Chem. B, 109, 7012-7021(2005).

    [11] S. Petersen, S. Barcikowski. Conjugation efficiency of laser-based bioconjugation of gold nanoparticles with nucleic acids. J. Phys. Chem. C, 113, 19830-19835(2009).

    [12] R. Torres-Mendieta, R. Mondragón, V. Puerto-Belda, O. Mendoza-Yero, J. Lancis, J. E. Juliá, G. Mínguez-Vega. Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation. ChemPhysChem, 18, 1055-1060(2017).

    [13] S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, M. A. El-Sayed. Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J. Phys. Chem. A, 103, 1165-1170(1999).

    [14] G. González-Rubio, A. Guerrero-Martínez, L. M. Liz-Marzán. Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc. Chem. Res., 49, 678-686(2016).

    [15] P. Wagener, S. Barcikowski. Laser fragmentation of organic microparticles into colloidal nanoparticles in a free liquid jet. Appl. Phys. A, 101, 435-439(2010).

    [16] C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, G. Mínguez-Vega. Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging. ACS Omega, 3, 2735-2742(2018).

    [17] A. Menéndez-Manjón, P. Wagener, S. Barcikowski. Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids. J. Phys. Chem. C, 115, 5108-5114(2011).

    [18] J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, E. L. Gurevich. Optimization of femtosecond laser processing in liquids. Appl. Surf. Sci., 467–468, 255-260(2019).

    [19] F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe. Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B, 104, 9111-9117(2000).

    [20] V. Amendola, S. Polizzi, M. Meneghetti. Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir, 23, 6766-6770(2007).

    [21] R. Streubel, S. Barcikowski, B. Gökce. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Opt. Lett., 41, 1486-1489(2016).

    [22] A. V. Kabashin, M. Meunier. Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys., 94, 7941-7943(2003).

    [23] T. Tsuji, T. Kakita, M. Tsuji. Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl. Surf. Sci., 206, 314-320(2003).

    [24] G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, A. Guerrero-Martínez. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science, 358, 640-644(2017).

    [25] R. Lachaine, É. Boulais, M. Meunier. From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles. ACS Photonics, 1, 331-336(2014).

    [26] V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, J. W. Freeland. Optical creation of a supercrystal with three-dimensional nanoscale periodicity. Nat. Mater., 18, 377-383(2019).

    [27] L. Shi, B. Iwan, R. Nicolas, Q. Ripault, J. R. C. Andrade, S. Han, H. Kim, W. Boutu, D. Franz, T. Heidenblut, C. Reinhardt, B. Bastiaens, T. Nagy, I. Babushkin, U. Morgner, S.-W. Kim, G. Steinmeyer, H. Merdji, M. Kovacev. Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica, 4, 1038-1043(2017).

    [28] X. Zeng, X. L. Mao, R. Greif, R. E. Russo. Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl. Phys. A, 80, 237-241(2005).

    [29] A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, G. Petite. Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses. Appl. Surf. Sci., 138–139, 311-314(1999).

    [30] M. A. Sobhan, M. Ams, M. J. Withford, E. M. Goldys. Ultrafast laser ablative generation of gold nanoparticles: the influence of pulse energy, repetition frequency and spot size. J. Nanoparticle Res., 12, 2831-2842(2010).

    [31] G. Zhu, J. van Howe, M. Durst, W. Zipfel, C. Xu. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express, 13, 2153-2159(2005).

    [32] D. Oron, E. Tal, Y. Silberberg. Scanningless depth-resolved microscopy. Opt. Express, 13, 1468-1476(2005).

    [33] A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. Simon Herrington, M. Mazilu, K. Dholakia. Wide-field multiphoton imaging through scattering media without correction. Sci. Adv., 4, eaau1338(2018).

    [34] R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, S. Nolte. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing. Light Sci. Appl., 3, e169(2014).

    [35] D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, J. A. Squier. Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials. Opt. Express, 18, 24673-24678(2010).

    [36] B. Tangeysh, K. M. Tibbetts, J. H. Odhner, B. B. Wayland, R. J. Levis. Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]. J. Phys. Chem. C, 117, 18719-18727(2013).

    [37] J. H. Odhner, K. M. Tibbetts, B. Tangeysh, B. B. Wayland, R. J. Levis. Mechanism of improved Au nanoparticle size distributions using simultaneous spatial and temporal focusing for femtosecond laser irradiation of aqueous KAuCl4. J. Phys. Chem. C, 118, 23986-23995(2014).

    [38] B. Tangeysh, K. Moore Tibbetts, J. H. Odhner, B. B. Wayland, R. J. Levis. Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction. Nano Lett., 15, 3377-3382(2015).

    [39] K. Maximova, A. Aristov, M. Sentis, A. V. Kabashin. Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water. Nanotechnology, 26, 065601(2015).

    [40] P. Wagener, A. Schwenke, B. N. Chichkov, S. Barcikowski. Pulsed laser ablation of zinc in tetrahydrofuran: bypassing the cavitation bubble. J. Phys. Chem. C, 114, 7618-7625(2010).

    [41] M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, H. Crespo. Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges. Opt. Express, 20, 688-697(2012).

    [42] M. Miranda, C. L. Arnold, T. Fordell, F. Silva, B. Alonso, R. Weigand, A. L’Huillier, H. Crespo. Characterization of broadband few-cycle laser pulses with the d-scan technique. Opt. Express, 20, 18732-18743(2012).

    [43] T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann, J. Polte. In situ determination of colloidal gold concentrations with UV-vis spectroscopy: limitations and perspectives. Anal. Chem., 86, 11115-11124(2014).

    [44] T. Wagner. ParticleSizer 1.0.7(2016).

    [45] A. Hahn, S. Barcikowski, B. N. Chichkov. Influences on nanoparticle production during pulsed laser ablation. J. Laser Micro/Nanoeng., 3, 73-77(2008).

    [46] A. Couairon, A. Mysyrowicz. Femtosecond filamentation in transparent media. Phys. Rep., 441, 47-189(2007).

    [47] R. W. Boyd. Nonlinear Optics(2008).

    [48] Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, A. Ting. Direct measurements of the nonlinear index of refraction of water at 815 and 407  nm using single-shot supercontinuum spectral interferometry. Appl. Phys. Lett., 94, 211102(2009).

    [49] C. Ma, W. Lin. Normal dispersion effects on the nonlinear focus. J. Opt. Soc. Am. B, 33, 1055-1059(2016).

    [50] K. Lim, M. Durand, M. Baudelet, M. Richardson. Transition from linear-to nonlinear-focusing regime in filamentation. Sci. Rep., 4, 7217(2014).

    [51] A. Vogel, N. Linz, S. Freidank, G. Paltauf. Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery. Phys. Rev. Lett., 100, 038102(2008).

    [52] W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, S. L. Chin. Femtosecond laser pulse filamentation versus optical breakdown in H2O. Appl. Phys. B, 76, 215-229(2003).

    [53] Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, C. R. Thompson. Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses. IEEE J. Quantum Electron., 33, 127-137(1997).

    Carlos Doñate-Buendía, Mercedes Fernández-Alonso, Jesús Lancis, Gladys Mínguez-Vega. Overcoming the barrier of nanoparticle production by femtosecond laser ablation in liquids using simultaneous spatial and temporal focusing[J]. Photonics Research, 2019, 7(11): 1249
    Download Citation