• Opto-Electronic Advances
  • Vol. 4, Issue 8, 210031-1 (2021)
Leonid Yu. Beliaev1, Osamu Takayama1, Pavel N. Melentiev2、3, and Andrei V. Lavrinenko1、*
Author Affiliations
  • 1DTU Fotonik-Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Kgs. Lyngby, Denmark
  • 2Institute of Spectroscopy RAS, Moscow 108840, Russia
  • 3Higher School of Economics, National Research University, Moscow 101000, Russia
  • show less
    DOI: 10.29026/oea.2021.210031 Cite this Article
    Leonid Yu. Beliaev, Osamu Takayama, Pavel N. Melentiev, Andrei V. Lavrinenko. Photoluminescence control by hyperbolic metamaterials and metasurfaces: a review[J]. Opto-Electronic Advances, 2021, 4(8): 210031-1 Copy Citation Text show less
    References

    [1] R Schirhagl, K Chang, M Loretz, CL Degen. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem, 65, 83-105(2014).

    [2] A Kinkhabwala, ZF Yu, SH Fan, Y Avlasevich, K Müllen et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics, 3, 654-657(2009).

    [3] M Bauch, K Toma, M Toma, QW Zhang, J Dostalek. Plasmon-enhanced fluorescence biosensors: a review. Plasmonics, 9, 781-799(2014).

    [4] JF Li, CY Li, RF Aroca. Plasmon-enhanced fluorescence spectroscopy. Chem Soc Rev, 46, 3962-3979(2017).

    [5] Y Jeong, YM Kook, K Lee, WG Koh. Metal enhanced fluorescence (MEF) for biosensors: general approaches and a review of recent developments. Biosens Bioelectron, 111, 102-116(2018).

    [6] SL Zhang, LW Liu, S Ren, ZL Li, YH Zhao et al. Recent advances in nonlinear optics for bio-imaging applications. Opto-Electron Adv, 3, 200003(2020).

    [7] A Sultangaziyev, R Bukasov. Review: applications of surface-enhanced fluorescence (SEF) spectroscopy in bio-detection and biosensing. Sens Bio-Sens Res, 30, 100382(2020).

    [8] C Joyce, SM Fothergill, F Xie. Recent advances in gold-based metal enhanced fluorescence platforms for diagnosis and imaging in the near-infrared. Mater Today Adv, 7, 100073(2020).

    [9] CJ Zhang, CY Zhang, ZL Zhang, T He, XH Mi et al. Self-suspended rare-earth doped up-conversion luminescent waveguide: propa-gating and directional radiation. Opto-Electron Adv, 3, 190045(2020).

    [10] Lee Ui, C Posner, JX Zhao, J Zhang, ZW Liu. Imaging of cell morphology changes via metamaterial-assisted photobleaching microscopy. Nano Lett, 21, 1716-1721(2021).

    [11] M Heo, H Cho, JW Jung, JR Jeong, S Park et al. High-performance organic optoelectronic devices enhanced by surface plasmon resonance. Adv Mater, 23, 5689-5693(2011).

    [12] ST Kochuveedu, DH Kim. Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. Nanoscale, 6, 4966-4984(2014).

    [13] FC Chien, CY Lin, G Abrigo. Enhancing the blinking fluorescence of single-molecule localization imaging by using a surface-plasmon-polariton-enhanced substrate. Phys Chem Chem Phys, 20, 27245-27255(2018).

    [14] AG Curto, G Volpe, TH Taminiau, MP Kreuzer, R Quidant et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 329, 930-933(2010).

    [15] TH Taminiau, FD Stefani, Hulst van. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt Express, 6, 10858-10866(2008).

    [16] MA Badshah, NY Koh, AW Zia, N Abbas, Z Zahra et al. Recent developments in plasmonic nanostructures for metal enhanced fluorescence-based biosensing. Nanomaterials, 10, 1749(2020).

    [17] B Miranda, KY Chu, PL Maffettone, AQ Shen, R Funari. Metal-enhanced fluorescence immunosensor based on plasmonic arrays of gold nanoislands on an etched glass substrate. ACS Appl Nano Mater, 3, 10470-10478(2020).

    [18] U Stella, L Boarino, Leo De, P Munzert, E Descrovi. Enhanced directional light emission assisted by resonant bloch surface waves in circular cavities. ACS Photonics, 6, 2073-2082(2019).

    [19] K Toma, E Descrovi, M Toma, M Ballarini, P Mandracci et al. Bloch surface wave-enhanced fluorescence biosensor. Biosens Bioelectron, 43, 108-114(2013).

    [20] KA Prusakov, DV Bagrov, DV Basmanov, SA Romanov, DV Klinov. Fluorescence imaging of cells using long-range electromagnetic surface waves for excitation. Appl Opt, 59, 4833-4838(2020).

    [21] A Pokhriyal, M Lu, CS Huang, S Schulz, BT Cunningham. Multicolor fluorescence enhancement from a photonics crystal surface. Appl Phys Lett, 97, 121108(2010).

    [22] A Pokhriyal, M Lu, V Chaudhery, S George, BT Cunningham. Enhanced fluorescence emission using a photonic crystal coupled to an optical cavity. Appl Phys Lett, 102, 221114(2013).

    [23] CLEO: 2011 - Laser Applications to Photonic Applications CThQ1 (Optical Society of America, 2011); http://doi.org/10.1364/cleo_si.2011.cthq1.

    [24] W Chen, KD Long, H Yu, YF Tan, JS Choi et al. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy. Analyst, 139, 5954-5963(2014).

    [25] SHG Menon, Krishna Lal, V Raghunathan. Silicon nitride based medium contrast gratings for doubly resonant fluorescence enhancement. IEEE Photonics J, 11, 4500711(2019).

    [26] S Boonruang, N Srisuai, R Charlermroj, M Makornwattana, A Somboonkaew et al. Excitation of multi-order guided mode resonance for multiple color fluorescence enhancement. Opt Laser Technol, 106, 410-416(2018).

    [27] JH Lin, HY Liou, CD Wang, CY Tseng, CT Lee et al. Giant enhancement of upconversion fluorescence of NaYF4:Yb3+,Tm3+ nanocrystals with resonant waveguide grating substrate. ACS Photonics, 2, 530-536(2015).

    [28] NV Hoang, A Pereira, HS Nguyen, E Drouard, B Moine et al. Giant enhancement of luminescence down-shifting by a doubly resonant rare-earth-doped photonic metastructure. ACS Photonics, 4, 1705-1712(2017).

    [29] S Sun, L Wu, P Bai, CE Png. Fluorescence enhancement in visible light: dielectric or noble metal?. Phys Chem Chem Phys, 18, 19324-19335(2016).

    [30] T Bucher, A Vaskin, R Mupparapu, FJF; Löchner et al. Tailoring photoluminescence from MoS2 monolayers by mie-resonant metasurfaces. ACS Photonics, 6, 1002-1009(2019).

    [31] HJ Lin, Oliveira de, P Gredin, M Mortier, L Billot et al. Fluorescence enhancement near single TiO2 nanodisks. Appl Phys Lett, 111, 251109(2017).

    [32] CL Cortes, W Newman, S Molesky, Z Jacob. Quantum nanophotonics using hyperbolic metamaterials. J Opt, 14, 063001(2012).

    [33] P Shekhar, J Atkinson, Z Jacob. Hyperbolic metamaterials: fundamentals and applications. Nano Converg, 1, 14(2014).

    [34] O Takayama, AV Lavrinenko. Optics with hyperbolic materials [Invited]. J Opt Soc Am B, 36, F38-F48(2019).

    [35] JB Sun, NM Litchinitser, J Zhou. Indefinite by nature: from ultraviolet to terahertz. ACS Photonics, 1, 293-303(2014).

    [36] K Korzeb, M Gajc, DA Pawlak. Compendium of natural hyperbolic materials. Opt Express, 23, 25406-25424(2015).

    [37] EE Narimanov, AV Kildishev. Naturally hyperbolic. Nat Photonics, 9, 214-216(2015).

    [38] L Ferrari, C Wu, D Lepage, X Zhang, ZW Liu. Hyperbolic metamaterials and their applications. Prog Quantum Electron, 40, 1-40(2015).

    [39] L Lu, RE Simpson, SK Valiyaveedu. Active hyperbolic metamaterials: progress, materials and design. J Opt, 20, 103001(2018).

    [40] JST Smalley, F Vallini, X Zhang, Y Fainman. Dynamically tunable and active hyperbolic metamaterials. Adv Opt Photonics, 10, 354-408(2018).

    [41] DC Adams, S Inampudi, T Ribaudo, D Slocum, S Vangala et al. Funneling light through a subwavelength aperture with epsilon-near-zero materials. Phys Rev Lett, 107, 133901(2011).

    [42] A Poddubny, I Iorsh, P Belov, Y Kivshar. Hyperbolic metamaterials. Nat Photonics, 7, 948-957(2013).

    [43] AV Kabashin, P Evans, S Pastkovsky, W Hendren, GA Wurtz et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater, 8, 867-871(2009).

    [44] KV Sreekanth, Y Alapan, M Elkabbash, E Ilker, M Hinczewski et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat Mater, 15, 621-627(2016).

    [45] E Shkondin, T Repän, MEA Panah, AV Lavrinenko, O Takayama. High aspect ratio plasmonic nanotrench structures with large active surface area for label-free mid-infrared molecular absorption sensing. ACS Appl Nano Mater, 1, 1212-1218(2018).

    [46] D Lu, ZW Liu. Hyperlenses and metalenses for far-field super-resolution imaging. Nat Commun, 3, 1205(2012).

    [47] Z Jacob, EE Narimanov. Optical hyperspace for plasmons: dyakonov states in metamaterials. Appl Phys Lett, 93, 221109(2008).

    [48] AV Kildishev, A Boltasseva, VM Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [49] AN Poddubny, PA Belov, YS Kivshar. Spontaneous radiation of a finite-size dipole emitter in hyperbolic media. Phys Rev A, 84, 023807(2011).

    [50] O Kidwai, SV Zhukovsky, JE Sipe. Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation. Opt Lett, 36, 2530-2532(2011).

    [51] M Mahmoodi, SH Tavassoli, O Takayama, J Sukham, R Malureanu et al. Existence conditions of high-k modes in finite hyperbolic metamaterials. Laser Photonics Rev, 13, 1800253(2019).

    [52] O Kidwai, SV Zhukovsky, JE Sipe. Effective-medium approach to planar multilayer hyperbolic metamaterials: strengths and limitations. Phys Rev A, 85, 053842(2012).

    [53] J Sukham, O Takayama, M Mahmoodi, S Sychev, A Bogdanov et al. Investigation of effective media applicability for ultrathin multilayer structures. Nanoscale, 11, 12582-12588(2019).

    [54] HNS Krishnamoorthy, Z Jacob, E Narimanov, I Kretzschmar, VM Menon. Topological transitions in metamaterials. Science, 336, 205-209(2012).

    [55] O Takayama, E Shkondin, A Bodganov, MEA Panah, K Golenitskii et al. Midinfrared surface waves on a high aspect ratio nanotrench platform. ACS Photonics, 4, 2899-2907(2017).

    [56] JST Smalley, F Vallini, SA Montoya, L Ferrari, S Shahin et al. Luminescent hyperbolic metasurfaces. Nat Commun, 8, 13793(2017).

    [57] N Vasilantonakis, ME Nasir, W Dickson, GA Wurtz, AV Zayats. Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides. Laser Photonics Rev, 9, 345-353(2015).

    [58] I Avrutsky, I Salakhutdinov, J Elser, V Podolskiy. Highly confined optical modes in nanoscale metal-dielectric multilayers. Phys Rev B, 75, 241402(2007).

    [59] SV Zhukovsky, AA Orlov, VE Babicheva, AV Lavrinenko, JE Sipe. Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials. Phys Rev A, 90, 013801(2014).

    [60] O Takayama, AA Bogdanov, AV Lavrinenko. Photonic surface waves on metamaterial interfaces. J Phys Condens Matter, 29, 463001(2017).

    [61] M Higuchi, J Takahara. Plasmonic interpretation of bulk propagating waves in hyperbolic metamaterial optical waveguides. Opt Express, 26, 1918-1929(2018).

    [62] SV Zhukovsky, O Kidwai, JE Sipe. Physical nature of volume plasmon polaritons in hyperbolic metamaterials. Opt Express, 21, 14982-14987(2013).

    [63] AN Poddubny, PA Belov, P Ginzburg, AV Zayats, YS Kivshar. Microscopic model of purcell enhancement in hyperbolic metamaterials. Phys Rev B, 86, 035148(2012).

    [64] AP Slobozhanyuk, P Ginzburg, DA Powell, I Iorsh, AS Shalin et al. Purcell effect in hyperbolic metamaterial resonators. Phys Rev B, 92, 195127(2015).

    [65] SM Rytov. Electromagnetic properties of a finely stratified medium. Sov Phys JETP, 2, 466-475(1956).

    [66] VM Agranovich. Dielectric permeability and influence of external fields on optical properties of superlattices. Solid State Commun, 78, 747-750(1991).

    [67] Z Jacob, JY Kim, GV Naik, A Boltasseva, EE Narimanov et al. Engineering photonic density of states using metamaterials. Appl Phys B, 100, 215-218(2010).

    [68] T Tumkur, G Zhu, P Black, YA Barnakov, CE Bonner et al. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl Phys Lett, 99, 151115(2011).

    [69] J Kim, VP Drachev, Z Jacob, GV Naik, A Boltasseva et al. Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt Express, 20, 8100-8116(2012).

    [70] KV Sreekanth, T Biaglow, G Strangi. Directional spontaneous emission enhancement in hyperbolic metamaterials. J Appl Phys, 114, 134306(2013).

    [71] MY Shalaginov, S Ishii, J Liu, J Liu, J Irudayaraj et al. Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials. Appl Phys Lett, 102, 173114(2013).

    [72] MY Shalaginov, VV Vorobyov, J Liu, M Ferrera, AV Akimov et al. Enhancement of single-photon emission from nitrogen-vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial. Laser Photonics Rev, 9, 120-127(2015).

    [73] Y Wang, H Sugimoto, S Inampudi, A Capretti, M Fujii et al. Broadband enhancement of local density of states using silicon-compatible hyperbolic metamaterials. Appl Phys Lett, 106, 241105(2015).

    [74] T Ozel, S Nizamoglu, MA Sefunc, O Samarskaya, IO Ozel et al. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots. ACS Nano, 5, 1328-1334(2011).

    [75] SV Zhukovsky, T Ozel, E Mutlugun, N Gaponik, A Eychmuller et al. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites. Opt Express, 22, 18290-18298(2014).

    [76] HI Lin, KC Shen, YM Liao, YH Li, P Perumal et al. Integration of nanoscale light emitters and hyperbolic metamaterials: an efficient platform for the enhancement of random laser action. ACS Photonics, 5, 718-727(2018).

    [77] KC Shen, C Hsieh, YJ Cheng, DP Tsai. Giant enhancement of emission efficiency and light directivity by using hyperbolic metacavity on deep-ultraviolet AlGaN emitter. Nano Energy, 45, 353-358(2018).

    [78] JK Kitur, L Gu, T Tumkur, C Bonner, MA Noginov. Stimulated emission of surface plasmons on top of metamaterials with hyperbolic dispersion. ACS Photonics, 2, 1019-1024(2015).

    [79] YF Shen, YX Yan, AN Brigeman, H Kim, NC Giebink. Efficient upper-excited state fluorescence in an organic hyperbolic metamaterial. Nano Lett, 18, 1693-1698(2018).

    [80] Lee Ui, OPM Gaudin, KJ Lee, E Choi, V Placide et al. Organic monolithic natural hyperbolic material. ACS Photonics, 6, 1681-1689(2019).

    [81] SV Zhukovsky, A Andryieuski, O Takayama, E Shkondin, R Malureanu et al. Experimental demonstration of effective medium approximation breakdown in deeply subwavelength all-dielectric multilayers. Phys Rev Lett, 115, 177402(2015).

    [82] M Mahmoodi, SH Tavassoli, AV Lavrinenko. Mode-resolved directional enhancement of spontaneous emission inside/outside finite multilayer hyperbolic metamaterials. Mater Today Commun, 23, 100859(2020).

    [83] Proceedings of SPIE 10719, Metamaterials, Metadevices, and Metasystems 2018 107192K (SPIE, 2018); http://doi.org/10.1117/12.2322085.

    [84] L Li, ZY Zhou, CJ Min, XC Yuan. Few-layer metamaterials for spontaneous emission enhancement. Opt Lett, 46, 190-193(2021).

    [85] L Wang, SL Li, BR Zhang, YZ Qin, Z Tian et al. Asymmetrically curved hyperbolic metamaterial structure with gradient thicknesses for enhanced directional spontaneous emission. ACS Appl Mater Interfaces, 10, 7704-7708(2018).

    [86] HI Lin, KC Shen, SY Lin, G Haider, YH Li et al. Transient and flexible hyperbolic metamaterials on freeform surfaces. Sci Rep, 8, 9469(2018).

    [87] FA Inam, N Ahmed, MJ Steel, S Castelletto. Hyperbolic metamaterial resonator-antenna scheme for large, broadband emission enhancement and single-photon collection. J Opt Soc Am B, 35, 2153-2162(2018).

    [88] A Kala, FA Inam, SA Biehs, P Vaity, VG Achanta. Hyperbolic metamaterial with quantum dots for enhanced emission and collection efficiencies. Adv Opt Mater, 8, 2000368(2020).

    [89] XD Yang, J Yao, J Rho, XB Yin, X Zhang. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat Photonics, 6, 450-454(2012).

    [90] SRKC Indukuri, C Frydendahl, J Bar-David, N Mazurski, U Levy. WS2 monolayers coupled to hyperbolic metamaterial nanoantennas: broad implications for light–matter-interaction applications. ACS Appl Nano Mater, 3, 10226-10233(2020).

    [91] T Forster. Energiewanderung und fluoreszenz. Naturwissenschaften, 33, 166-175(1946).

    [92] T Förster. Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys, 437, 55-75(1948).

    [93] TU Tumkur, JK Kitur, CE Bonner, AN Poddubny, EE Narimanov et al. Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials. Faraday Discuss, 178, 395-412(2015).

    [94] HP Adl, S Gorji, MK Habil, I Suárez, VS Chirvony et al. Purcell enhancement and wavelength shift of emitted light by CsPbI3 perovskite nanocrystals coupled to hyperbolic metamaterials. ACS Photonics, 7, 3152-3160(2020).

    [95] P Tonkaev, S Anoshkin, A Pushkarev, R Malureanu, M Masharin et al. Acceleration of radiative recombination in quasi-2D perovskite films on hyperbolic metamaterials. Appl Phys Lett, 118, 091104(2021).

    [96] HI Lin, CC Wang, KC Shen, MY Shalaginov, PK Roy et al. Enhanced laser action from smart fabrics made with rollable hyperbolic metamaterials. npj Flex Electron, 4, 20(2020).

    [97] Y Moritake, K Nakayama, T Suzuki, H Kurosawa, T Kodama et al. Lifetime reduction of a quantum emitter with quasiperiodic metamaterials. Phys Rev B, 90, 075146(2014).

    [98] L Li, CJ Mathai, S Gangopadhyay, XD Yang, J Gao. Spontaneous emission rate enhancement with aperiodic Thue-Morse multilayer. Sci Rep, 9, 8473(2019).

    [99] AA High, RC Devlin, A Dibos, M Polking, DS Wild et al. Visible-frequency hyperbolic metasurface. Nature, 522, 192-196(2015).

    [100] O Takayama, P Dmitriev, E Shkondin, O Yermakov, M Panah et al. Experimental observation of dyakonov plasmons in the mid-infrared. Semiconductors, 52, 442-446(2018).

    [101] ZT Li, JST Smalley, R Haroldson, DY Lin, R Hawkins et al. Active perovskite hyperbolic metasurface. ACS Photonics, 7, 1754-1761(2020).

    [102] MA Noginov, H Li, YA Barnakov, D Dryden, G Nataraj et al. Controlling spontaneous emission with metamaterials. Opt Lett, 35, 1863-1865(2010).

    [103] DJ Roth, AV Krasavin, A Wade, W Dickson, A Murphy et al. Spontaneous emission inside a hyperbolic metamaterial waveguide. ACS Photonics, 4, 2513-2521(2017).

    [104] P Ginzburg, DJ Roth, ME Nasir, P Segovia, AV Krasavin et al. Spontaneous emission in non-local materials. Light: Sci Appl, 6, e16273(2017).

    [105] DJ Roth, ME Nasir, P Ginzburg, P Wang, Marois Le et al. Förster resonance energy transfer inside hyperbolic metamaterials. ACS Photonics, 5, 4594-4603(2018).

    [106] RM Córdova-Castro, AV Krasavin, ME Nasir, AV Zayats, W Dickson. Nanocone-based plasmonic metamaterials. Nanotechnology, 30, 055301(2019).

    [107] DJ Roth, P Ginzburg, LM Hirvonen, JA Levitt, ME Nasir et al. Singlet–triplet transition rate enhancement inside hyperbolic metamaterials. Laser Photonics Rev, 13, 1900101(2019).

    [108] R Chandrasekar, ZX Wang, XG Meng, SI Azzam, MY Shalaginov et al. Lasing action with gold nanorod hyperbolic metamaterials. ACS Photonics, 4, 674-680(2017).

    [109] C Indukuri, RK Yadav, JK Basu. Broadband room temperature strong coupling between quantum dots and metamaterials. Nanoscale, 9, 11418-11423(2017).

    [110] D Lu, JJ Kan, EE Fullerton, ZW Liu. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat Nanotechnol, 9, 48-53(2014).

    [111] D Lu, L Ferrari, JJ Kan, EE Fullerton, ZW Liu. Optimization of nanopatterned multilayer hyperbolic metamaterials for spontaneous light emission enhancement. Phys Status Solidi (A), 215, 1800263(2018).

    [112] L Li, W Wang, TS Luk, XD Yang, J Gao. Enhanced quantum dot spontaneous emission with multilayer metamaterial nanostructures. ACS Photonics, 4, 501-508(2017).

    [113] KV Sreekanth, KH Krishna, Luca De, G Strangi. Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials. Sci Rep, 4, 6340(2014).

    [114] T Galfsky, J Gu, EE Narimanov, VM Menon. Photonic hypercrystals for control of light-matter interactions. Proc Natl Acad Sci USA, 114, 5125-5129(2017).

    [115] QQ Gan, YK Gao, K Wagner, D Vezenov, YJ Ding et al. Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings. Proc Natl Acad Sci USA, 108, 5169-5173(2011).

    [116] X Ni, Y Wu, ZG Chen, LY Zheng, YL Xu et al. Acoustic rainbow trapping by coiling up space. Sci Rep, 4, 7038(2014).

    [117] HF Hu, DX Ji, X Zeng, K Liu, QQ Gan. Rainbow trapping in hyperbolic metamaterial waveguide. Sci Rep, 3, 1249(2013).

    [118] J Zhou, AF Kaplan, L Chen, LJ Guo. Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array. ACS Photonics, 1, 618-624(2014).

    [119] KH Krishna, KV Sreekanth, G Strangi. Dye-embedded and nanopatterned hyperbolic metamaterials for spontaneous emission rate enhancement. J Opt Soc Am B, 33, 1038-1043(2016).

    [120] T Galfsky, Z Sun, CR Considine, CT Chou, WC Ko et al. Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals. Nano Lett, 16, 4940-4945(2016).

    [121] WD Newman, CL Cortes, Z Jacob. Enhanced and directional single-photon emission in hyperbolic metamaterials. J Opt Soc Am B, 30, 766-775(2013).

    [122] T Galfsky, HNS Krishnamoorthy, W Newman, EE Narimanov, Z Jacob et al. Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction. Optica, 2, 62-65(2015).

    [123] Y Cheng, CT Liao, ZH Xie, YC Hung, MC Lee. Study of cavity-enhanced dipole emission on a hyperbolic metamaterial slab. J Opt Soc Am B, 36, 426-434(2019).

    [124] XX Niu, XY Hu, SS Chu, QH Gong. Epsilon-near-zero photonics: a new platform for integrated devices. Adv Opt Mater, 6, 1701292(2018).

    [125] DI Vulis, O Reshef, P Camayd-Muñoz, E Mazur. Manipulating the flow of light using Dirac-cone zero-index metamaterials. Rep Prog Phys, 82, 012001(2019).

    [126] S Campione, I Brener, F Marquier. Theory of epsilon-near-zero modes in ultrathin films. Phys Rev B, 91, 121408(2015).

    [127] L Nordin, O Dominguez, CM Roberts, W Streyer, K Feng et al. Mid-infrared epsilon-near-zero modes in ultra-thin phononic films. Appl Phys Lett, 111, 091105(2017).

    [128] TG Folland, GY Lu, A Bruncz, JR Nolen, M Tadjer et al. Vibrational coupling to epsilon-near-zero waveguide modes. ACS Photonics, 7, 614-621(2020).

    [129] N Engheta. Pursuing near-zero response. Science, 340, 286-287(2013).

    [130] MH Javani, MI Stockman. Real and imaginary properties of epsilon-near-zero materials. Phys Rev Lett, 117, 107404(2106).

    [131] R Fleury, A Alù. Enhanced superradiance in epsilon-near-zero plasmonic channels. Phys Rev B, 87, 201101(2013).

    [132] KV Sreekanth, Luca De, G Strangi. Experimental demonstration of surface and bulk plasmon polaritons in hypergratings. Sci Rep, 3, 3291(2013).

    [133] V Caligiuri, R Dhama, KV Sreekanth, G Strangi, Luca De. Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies. Sci Rep, 6, 20002(2016).

    [134] VP Drachev, VA Podolskiy, AV Kildishev. Hyperbolic metamaterials: new physics behind a classical problem. Opt Express, 21, 15048-15064(2013).

    [135] V Caligiuri, M Palei, M Imran, L Manna, R Krahne. Planar double-epsilon-near-zero cavities for spontaneous emission and purcell effect enhancement. ACS Photonics, 5, 2287-2294(2018).

    [136] DR Walt. Optical methods for single molecule detection and analysis. Anal Chem, 85, 1258-1263(2013).

    [137] PN Melentiev, LV Son, DS Kudryavtsev, IE Kasheverov, VI Tsetlin et al. Ultrafast, ultrasensitive detection and imaging of single cardiac troponin-T molecules. ACS Sens, 5, 3576-3583(2020).

    [138] N Engheta. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science, 317, 1698-1702(2007).

    [139] PN Melentiev, A Kalmykov, A Kuzin, D Negrov, V Klimov et al. Open-type SPP waveguide with ultrahigh bandwidth up to 3.5 THz. ACS Photonics, 6, 1425-1433(2019).

    [140] C Argyropoulos, NM Estakhri, F Monticone, A Alù. Negative refraction, gain and nonlinear effects in hyperbolic metamaterials. Opt Express, 21, 15037-15047(2013).

    [141] MJ Wan, P Gu, WY Liu, Z Chen, ZL Wang. Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities. Appl Phys Lett, 110, 031103(2017).

    [142] B Janaszek, A Tyszka-Zawadzka, P Szczepański. Control of gain/absorption in tunable hyperbolic metamaterials. Opt Express, 25, 13153-13162(2017).

    [143] DJ Bergman, MI Stockman. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett, 90, 027402(2003).

    [144] SI Bozhevolnyi, JB Khurgin. The case for quantum plasmonics. Nat Photonics, 11, 398-400(2017).

    [145] Valle del, FP Laussy, C Tejedor. Luminescence spectra of quantum dots in microcavities. Phys Rev B,, 79, 235326(2009).

    [146] TV Shahbazyan. Exciton-plasmon energy exchange drives the transition to a strong coupling regime. Nano Lett, 19, 3273-3279(2019).

    [147] JB Khurgin. Exceptional points in polaritonic cavities and subthreshold fabry–perot lasers. Optica, 7, 1015-1023(2020).

    [148] VN Pustovit, AM Urbas, DE Zelmon. Surface plasmon amplification by stimulated emission of radiation in hyperbolic metamaterials. Phys Rev B, 94, 235445(2016).

    [149] F Vaianella, JM Hamm, O Hess, B Maes. Strong coupling and exceptional points in optically pumped active hyperbolic metamaterials. ACS Photonics, 5, 2486-2495(2018).

    [150] X Ni, GV Naik, AV Kildishev, Y Barnakov, A Boltasseva et al. Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions. Appl Phys B, 103, 553-558(2011).

    [151] P Michler, A Kiraz, C Becher, WV Schoenfeld, PM Petroff et al. A quantum dot single-photon turnstile device. Science, 290, 2282-2285(2000).

    [152] M Pelton, C Santori, J Vučković, BY Zhang, GS Solomon et al. Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys Rev Lett, 89, 233602(2002).

    [153] P Lodahl, Driel van, IS Nikolaev, A Irman, K Overgaag et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 430, 654-657(2004).

    [154] G Khitrova, HM Gibbs, M Kira, SW Koch, A Scherer. Vacuum Rabi splitting in semiconductors. Nat Phys, 2, 81-90(2006).

    [155] AV Rogacheva, VA Fedotov, AS Schwanecke, NI Zheludev. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys Rev Lett, 97, 177401(2006).

    [156] R Ameling, D Dregely, H Giessen. Strong coupling of localized and surface plasmons to microcavity modes. Opt Lett, 36, 2218-2220(2011).

    [157] T Goldzak, AA Mailybaev, N Moiseyev. Light stops at exceptional points. Phys Rev Lett, 120, 013901(2018).

    [158] A Pick, B Zhen, OD Miller, CW Hsu, F Hernandez et al. General theory of spontaneous emission near exceptional points. Opt Express, 25, 12325-12348(2017).

    [159] JP Hou, ZT Li, XW Luo, Q Gu, CW Zhang. Topological bands and triply degenerate points in non-hermitian hyperbolic metamaterials. Phys Rev Lett, 124, 073603(2020).

    [160]

    [161] TJ Antosiewicz, SP Apell, T Shegai. Plasmon-exciton interactions in a core-shell geometry: from enhanced absorption to strong coupling. ACS Photonics, 1, 454-463(2014).

    [162] KC Shen, CT Ku, C Hsieh, HC Kuo, YJ Cheng et al. Deep-ultraviolet hyperbolic metacavity laser. Adv Mater, 30, 1706918(2018).

    [163] VY Shishkov, ES Andrianov, AA Pukhov, AP Vinogradov. Enhancement of nonclassical raman light intensity by plasmonic nanoantenna. Phys Rev A, 103, 013725(2021).

    [164] Pino del, J Feist, FJ Garcia-Vidal. Signatures of vibrational strong coupling in raman scattering. J. Phys Chem C, 119, 29132-29137(2015).

    [165] E Waks, D Sridharan. Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter. Phys Rev A, 84, 043845(2010).

    [166] AJ Hoffman, L Alekseyev, SS Howard, KJ Franz, D Wasserman et al. Negative refraction in semiconductor metamaterials. Nat Mater, 6, 946-950(2007).

    [167] PN Li, I Dolado, FJ Alfaro-Mozaz, F Casanova, LE Hueso et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science, 359, 892-896(2018).

    [168] WL Ma, P Alonso-González, SJ Li, AY Nikitin, J Yuan et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 562, 557-562(2018).

    [169] C Wang, SY Huang, QX Xing, YG Xie, CY Song et al. Van der Waals thin films of WTe2 for natural hyperbolic plasmonic surfaces. Nat Commun, 11, 1158(2020).

    [170] H Gao, XM Zhang, WF Li, MW Zhao. Tunable broadband hyperbolic light dispersion in metal diborides. Opt Express, 27, 36911-36922(2019).

    [171] H Gao, L Sun, MW Zhao. Low-loss hyperbolic dispersion and anisotropic plasmonic excitation in nodal-line semimetallic yttrium nitride. Opt Express, 28, 22076-22087(2020).

    [172]

    Leonid Yu. Beliaev, Osamu Takayama, Pavel N. Melentiev, Andrei V. Lavrinenko. Photoluminescence control by hyperbolic metamaterials and metasurfaces: a review[J]. Opto-Electronic Advances, 2021, 4(8): 210031-1
    Download Citation