• Laser & Optoelectronics Progress
  • Vol. 57, Issue 17, 171408 (2020)
Rui Zhang1, Pan Ren2, Yingfei Yang2, Jiaoxi Yang3, and Shengfeng Zhou2、*
Author Affiliations
  • 1School of Physical science and Technology, Tianjin Polytechnic University, Tianjin 300387, China
  • 2Institute of Advanced Wear & Corrosion Resistance and Functional Materials, Jinan University, Guangzhou, Guangdong 510632, China;
  • 3Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/LOP57.171408 Cite this Article Set citation alerts
    Rui Zhang, Pan Ren, Yingfei Yang, Jiaoxi Yang, Shengfeng Zhou. High-Temperature Oxidation Characteristics of Al2O3/CoNiCrAlY Coating Obtained via Laser Cladding[J]. Laser & Optoelectronics Progress, 2020, 57(17): 171408 Copy Citation Text show less
    References

    [1] Liu Z Y, Gao W, Dahm K L et al. Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings[J]. Acta Materialia, 46, 1691-1700(1998).

    [2] Shi L, Xin L, Wang X Y et al. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors[J]. Journal of Alloys and Compounds, 649, 515-530(2015).

    [3] Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings[J]. Acta Materialia, 159, 150-162(2018).

    [4] Evans A G, Mumm D R, Hutchinson J W et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 46, 505-553(2001).

    [5] Sloof W G, Nijdam T J. On the high-temperature oxidation of MCrAlY coatings[J]. International Journal of Materials Research, 100, 1318-1330(2009).

    [6] Zhou S F, Xiong Z, Lei J B et al. Influence of milling time on the microstructure evolution and oxidation behavior of NiCrAlY coatings by laser induction hybrid cladding[J]. Corrosion Science, 103, 105-116(2016).

    [7] Hu Y, Cai C Y, Wang Y G et al. YSZ/NiCrAlY interface oxidation of APS thermal barrier coatings[J]. Corrosion Science, 142, 22-30(2018).

    [8] Feizabadi A, Salehi Doolabi M, Sadrnezhaad S K et al. Cyclic oxidation characteristics of HVOF thermal-sprayed NiCoCrAlY and CoNiCrAlY coatings at 1000 ℃[J]. Journal of Alloys and Compounds, 746, 509-519(2018).

    [9] Gong T M. HVOFP reparation technology and basic theoretical research of powder sprayed with high performance hard alloy[D]. Changsha: Central South University(2012).

    [10] Li Y J. Xie Y T, huang L P, et al. Effect of physical vapor deposited Al2O3 film on TGO growth in YSZ/CoNiCrAlY coatings[J]. Ceramics International, 38, 5113-5121(2012).

    [11] Daroonparvar M. Yajid M A M, Kay C M, et al. Effects of Al2O3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 ℃[J]. Corrosion Science, 144, 13-34(2018).

    [12] Wu Y N, Wang Q M, Ke P L et al. Evaluation of arc ion plated NiCoCrAlYSiB coatings after oxidation at 900-1100 ℃[J]. Surface and Coatings Technology, 200, 2857-2863(2006).

    [13] Wu Y N, Qin M, Feng Z C et al. Improved oxidation resistance of NiCrAlY coatings[J]. Materials Letters, 57, 2404-2408(2003).

    [14] Zhu H M, Hu W F, Li Y Z et al. Effect of tempering temperature on microstructure and properties of laser-cladded martensitic stainless steel layer[J]. Chinese Journal of Lasers, 46, 1202001(2019).

    [15] Liu H X, Dong T, Zhang X W et al. Microstructure and cutting performance of WC/Co50/Al cemented carbide coated tools fabricated by laser cladding process[J]. Chinese Journal of Lasers, 44, 0802002(2017).

    [16] Li L Q, Yao C W, Huang J et al. Characteristics of interdendritic residual austenite in laser cladding of high hardness iron-based coating[J]. Chinese Journal of Lasers, 44, 0302011(2017).

    [17] Gu S N, Wang G Y, Qin Y et al. Correlation between process parameters and microstructure morphologies of W-Cu composites fabricated by laser cladding[J]. Chinese Journal of Lasers, 45, 0402005(2018).

    [18] Bezençon C, Schnell A, Kurz W. Epitaxial deposition of MCrAlY coatings on a Ni-base superalloy by laser cladding[J]. Scripta Materialia, 49, 705-709(2003).

    [19] Li M X, He Y Z, Sun G X. Microstructure of ODS superalloy coating produced by laser surface cladding[J]. Rare Metal Materials and Engineering, 34, 248-251(2005).

    [20] W H Y. Preparation and properties of nano-particle reinforced NiCoCrAlY laser cladding coating[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 44-50(2010).

    [21] Zhang Y J, Sun X F, Zhang Y C et al. A comparative study of DS NiCrAlY coating and LPPS NiCrAlY coating[J]. Materials Science and Engineering: A, 360, 65-69(2003).

    [22] Nath M, Sen S, Banerjee K et al. Densification behavior and properties of alumina-chrome ceramics: effect of TiO2[J]. Ceramics International, 39, 227-232(2013).

    [23] Liu P S[M]. High temperature oxidation behavior of cobalt-based alloy aluminide coating(2008).

    [24] Yuan C Y. Study on double glow aluminizing and high temperature oxidation resistance of Ni-based alloy GH30[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 37-48(2010).

    [25] Li T F[M]. High temperature oxidation and hot corrosion of metals(2003).

    [26] Brumm M W, Grabke H J. The oxidation behaviour of NiAl-I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys[J]. Corrosion Science, 33, 1677-1690(1992).

    [27] Li H Q, Wang Q M, Jiang S M et al. Oxidation and interfacial fracture behaviour of NiCrAlY/Al2O3 coatings on an orthorhombic-Ti2AlNb alloy[J]. Corrosion Science, 53, 1097-1106(2011).

    [28] Pei H Q, Wen Z X, Zhang Y M et al. Oxidation behavior and mechanism of a Ni-based single crystal superalloy with single α-Al2O3 film at 1000 ℃[J]. Applied Surface Science, 411, 124-135(2017).

    [29] Krupp U, Christ H J. Selective oxidation and internal nitridation during high-temperature exposure of single-crystalline nickel-base superalloys[J]. Metallurgical and Materials Transactions A, 31, 47-56(2000).

    [30] Brenneman J, Wei J, Sun Z et al. Oxidation behavior of GTD111 Ni-based superalloy at 900 ℃ in air[J]. Corrosion Science, 100, 267-274(2015).

    [31] Nijdam T J. Jeurgens L P H, Chen J, et al. On the microstructure of the initial oxide grown by controlled annealing and oxidation of a NiCoCrAlY bond coating[J]. Oxidation of Metals, 64, 355-377(2005).

    [32] Zhu C, Li P, Wu X Y. A study of the diffusion and pre-oxidation treatment on the formation of Al2O3 ceramic scale on NiCrAlY bond-coat during initial oxidation process[J]. Ceramics International, 42, 7708-7716(2016).

    [33] Zhu C, Li P, Javed A et al. An investigation on the microstructure and oxidation behavior of laser remelted air plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 206, 3739-3746(2012).

    [34] Lou H Y, Wang F H, Zhu S L et al. Oxide formation of K38G superalloy and its sputtered micrograined coating[J]. Surface and Coatings Technology, 63, 105-114(1994).

    Rui Zhang, Pan Ren, Yingfei Yang, Jiaoxi Yang, Shengfeng Zhou. High-Temperature Oxidation Characteristics of Al2O3/CoNiCrAlY Coating Obtained via Laser Cladding[J]. Laser & Optoelectronics Progress, 2020, 57(17): 171408
    Download Citation