• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 5, 576 (2021)
Chuan SHEN1, Liao YANG1, Hui-Jun GUO1, Dan YANG1, Lu CHEN1、2、*, and Li HE1
Author Affiliations
  • 1Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2Hangzhou Insitute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.05.002 Cite this Article
    Chuan SHEN, Liao YANG, Hui-Jun GUO, Dan YANG, Lu CHEN, Li HE. Numerical simulation of high-operating-temperature MWIR HgCdTe APD detectors[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 576 Copy Citation Text show less
    References

    [1] J.D. Beck, C.-F. Wan, M.A Kinch et al. The HgCdTe Electron avalanche photodiode. J. Electron. Mater, 35, 1166-1173(2006).

    [2] I Baker, S. Duncan, J Copley. A low noise, laser-gated imaging system for long range target identification. Proc. SPIE5406, 113-144(2004).

    [3] M.B. Reine, J.W. Marciniec, K.K. Wong et al. HgCdTe MWIR back-illuminated electron-initiated avalanche photodiode arrays. J. Electron. Mater, 36, 1059-1067(2007).

    [5] G. Perrais, O. Gravrand, J. Baylet et al. Gain and dark current characteristics of planar HgCdTe avalanche photo diodes. J. Electron. Mater, 36, 963-970(2007).

    [6] J. Asbrock, S. Bailey, D. Baley et al. Ultra-high sensitivity APD based 3D LADAR sensors: linear mode photon counting LADAR camera for the Ultra-Sensitive Detector program. Proc. SPIE6940, 69402O(2008).

    [7] J. Rothman, L. Mollard, S. Bosson et al. Short-Wave Infrared HgCdTe Avalanche Photodiodes. J. Electron. Mater, 41, 29282936(2012).

    [8] M.A. Kinch,. A theoretical model for the HgCdTe electron avalanche photodiode. J. Electron. Mater, 37, 1453-1459(2008).

    [9] J. Rothman, K. Foubert, G. Lasfargues et al. High operating temperature SWIR HgCdTe APDs for remote sensing. Proc. Of SPIE Vol. 9254 92540P-9.

    [10] Hao Li, Chun Lin, Songmin Zhou et al. HgCdTe avalanche photodiode FPA. J. Infrared Millim. Waves, 38, 587-590(2019).

    [11] Guo Huijun, Cheng Yushun, Chen Lu et al. The performance of Mid-wave Infrared HgCdTe e-avalanche Photodiodes at SITP. Proc. Of SPIE Vol, 11170-111702M(2019).

    [12] Xiongjun Li, Fuzhang Han, Lihua Liet. Gain characteristics of MW HgCdTe avalanche photodiodes[J] J. Infrared Millim.Waves, 38, 175-181(2019).

    [13] W C Qiu, W D Hu, L Chen et al. Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes. IEEE Transactions on Electron Devices, 62, 1926-1931(2015).

    [14] Q Li, J L He, W D Hu et al. Influencing sources for dark current transport and avalanche mechanisms in planar and mesa HgCdTe p-i-n electron-avalanche photodiodes. IEEE Transactions on Electron Devices, 65, 572-576(2018).

    [15] Y OKUTO, C.R CROWELL. Threshold Energy Effect on Avalanche Breakdown Voltage in Semiconductor Junctions. Solid-State Electron, 18, 161-168(1975).

    Chuan SHEN, Liao YANG, Hui-Jun GUO, Dan YANG, Lu CHEN, Li HE. Numerical simulation of high-operating-temperature MWIR HgCdTe APD detectors[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 576
    Download Citation