• Journal of Inorganic Materials
  • Vol. 37, Issue 1, 3 (2022)
Wa GAO*, Yujie XIONG, Congping WU, Yong ZHOU, and Zhigang ZOU
DOI: 10.15541/jim20210368 Cite this Article
Wa GAO, Yujie XIONG, Congping WU, Yong ZHOU, Zhigang ZOU. Recent Progress on Photocatalytic CO2 Reduction with Ultrathin Nanostructures[J]. Journal of Inorganic Materials, 2022, 37(1): 3 Copy Citation Text show less
References

[1] YAN-SONG ZHOU, ZHI-TONG WANG, LEI HUANG et al. Engineering 2D photocatalysts toward carbon dioxide reduction. Adv. Energy Mater., 11, 2003159(2021). https://onlinelibrary.wiley.com/toc/16146840/11/8

[2] NHU-NANG VU, KALIAGUINE SERGE, TRONG-ON DO. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight-driven photocatalytic reduction of CO2 into fuels. Adv. Funct. Mater., 29(2019).

[3] XING-CHEN JIAO, KAI ZHENG, LIANG LIANG et al. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev., 49, 6592-6604(2020). http://xlink.rsc.org/?DOI=D0CS00332H

[4] JUN-WEI FU, KE-XIN JIANG, XIAO-QING QIU et al. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today, 32, 222-243(2020). https://linkinghub.elsevier.com/retrieve/pii/S1369702119304389

[5] WEN-GUANG TU, YONG ZHOU, ZHI-GANG ZOU. Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv. Funct. Mater., 23, 4996-5008(2013). http://doi.wiley.com/10.1002/adfm.v23.40

[6] WEN-GUANG TU, YONG ZHOU, ZHI-GANG ZOU. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater., 26, 4607-4626(2014). http://doi.wiley.com/10.1002/adma.v26.27

[7] YU-FEI ZHAO, I N WATERHOUSE GEOFFREY, GUAN-BO CHEN et al. Two-dimensional-related catalytic materials for solar-driven conversion of CO:X into valuable chemical feedstocks. Chem. Soc. Rev, 48, 1972-2010(2019). http://xlink.rsc.org/?DOI=C8CS00607E

[8] JUN XIONG, PIN SONG, JUN DI et al. Ultrathin structured photocatalysts: a versatile platform for CO2 reduction. Appl. Catal. B Environ., 256, 117788(2019). https://linkinghub.elsevier.com/retrieve/pii/S0926337319305272

[9] SHAN-SHAN CHEN, YU QI, CAN LI et al. Surface strategies for particulate photocatalysts toward artificial photosynthesis. Joule, 2, 2260-2288(2018). https://linkinghub.elsevier.com/retrieve/pii/S2542435118303416

[13] QIU-TONG HAN, XIAO-WAN BAI, ZAI-QIN MAN et al. Convincing synthesis of atomically thin, single-crystalline InVO4 sheets toward promoting highly selective and efficient solar conversion of CO2 into CO. J. Am. Chem. Soc., 141, 4209-4213(2019). https://pubs.acs.org/doi/10.1021/jacs.8b13673

[14] XIAO-YONG WU, YUAN LI, GAO-KE ZHANG et al. Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: insight into full spectrum-induced reaction mechanism. J. Am. Chem. Soc., 141, 5267-5274(2019). https://pubs.acs.org/doi/10.1021/jacs.8b12928

[15] QI LIU, DI WU, YONG ZHOU et al. Single-crystalline, ultrathin ZnGa2O4 nanosheet scaffolds to promote photocatalytic activity in CO2 reduction into methane. ACS Appl. Mater. Interfaces, 6, 2356-2361(2014). https://pubs.acs.org/doi/10.1021/am404572g

[16] WA GAO, XIAO-WAN BAI, YU-YING GAO et al. Anchoring of black phosphorus quantum dots onto WO3 nanowires to boost photocatalytic CO2 conversion into solar fuels. Chem. Commun., 56, 7777-7780(2020). http://xlink.rsc.org/?DOI=D0CC00805B

[17] WEN-GUANG TU, YONG ZHOU, QI LIU et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene- promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv. Funct. Mater., 23, 1743-1749(2013). http://doi.wiley.com/10.1002/adfm.v23.14

[18] SHAO-WEN CAO, BAO-JIA SHEN, TONG TONG et al. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater., 28, 1800136(2018). http://doi.wiley.com/10.1002/adfm.v28.21

[19] SI-ZHOU YANG, WEN-HUI HU, XIN ZHANG et al. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J. Am. Chem. Soc, 140, 14614-14618(2018). https://pubs.acs.org/doi/10.1021/jacs.8b09705

[20] WEN-BO LIU, XIAO-KANG LI, CHI-MING WANG et al. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc, 141, 17431-17440(2019). https://pubs.acs.org/doi/10.1021/jacs.9b09502

[21] XIAO-DONG LI, YONG-FU SUN, JIA-QI XU et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy, 4, 690-699(2019). https://doi.org/10.1038/s41560-019-0431-1

[22] XING-CHEN JIAO, ZONG-WEI CHEN, XIAO-DONG LI et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc, 139, 7586-7594(2017). https://pubs.acs.org/doi/10.1021/jacs.7b02290

[23] LIANG LIANG, XIAO-DONG LI, JIA-CHEN ZHANG et al. Efficient infrared light induced CO2 reduction with nearly 100% CO selectivity enabled by metallic CoN porous atomic layers. Nano Energy, 69, 104421(2020). https://linkinghub.elsevier.com/retrieve/pii/S221128551931136X

[24] JU WU, XIAO-DONG LI, WEN SHI et al. Efficient visible- light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem. Int. Ed, 57, 8719-8723(2018). https://onlinelibrary.wiley.com/toc/15213773/57/28

[25] LIANG LIANG, XIAO-DONG LI, YONG-FU SUN et al. Infrared light-driven CO2 overall splitting at room temperature. Joule, 2, 1004-1016(2018). https://linkinghub.elsevier.com/retrieve/pii/S2542435118300886

[26] XING-CHEN JIAO, XIAO-DONG LI, XIU-YU JIN et al. Partially oxidized SnS2 atomic layers achieving efficient visible- light-driven CO2 reduction. J. Am. Chem. Soc., 139, 18044-18051(2017). https://pubs.acs.org/doi/10.1021/jacs.7b10287

[27] HUI-LI ZHENG, SHAN-LIN HUANG, MING-BU LUO et al. Photochemical in situ exfoliation of metal-organic frameworks for enhanced visible-light-driven CO2 reduction. Angew. Chem. Int. Ed., 59, 23588-23592(2020). https://onlinelibrary.wiley.com/toc/15213773/59/52

[28] XIAO-DONG LI, LIANG LIANG, YONG-FU SUN et al. Ultrathin conductor enabling efficient IR light CO2 reduction. J. Am. Chem. Soc., 141, 423-430(2019). https://pubs.acs.org/doi/10.1021/jacs.8b10692

[29] BIN HAN, XIN-WEN OU, ZI-QI DENG et al. Nickel metal- organic framework monolayers for photoreduction of diluted CO2: metal-node-dependent activity and selectivity. Angew. Chem. Int. Ed., 57, 16811-16815(2018). https://onlinelibrary.wiley.com/toc/15213773/57/51

[30] YU-FEI ZHAO, GUAN-GBO CHEN, TONG BIAN et al. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater., 27, 7824-7831(2015). https://onlinelibrary.wiley.com/doi/10.1002/adma.201503730

[31] JUN DI, XIAO-XU ZHAO, CHENG LIAN et al. Atomically-thin Bi2MoO6 nanosheets with vacancy pairs for improved photocatalytic CO2 reduction. Nano Energy, 61, 54-59(2019). https://linkinghub.elsevier.com/retrieve/pii/S2211285519303301

[32] SHAN GAO, BING-CHUAN GU, XING-CHEN JIAO et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J. Am. Chem. Soc., 139, 3438-3445(2017). https://pubs.acs.org/doi/10.1021/jacs.6b11263

[33] XING-WANG ZHU, SHU-QUAN HUANG, QING YU et al. In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Appl. Catal. B Environ., 269, 118760(2020). https://linkinghub.elsevier.com/retrieve/pii/S0926337320301752

[34] XIAO-DONG LI, SHU-MIN WANG, LI LI et al. Opportunity of atomically thin two-dimensional catalysts for promoting CO2 electroreduction. Acc. Chem. Res, 53, 2964-2974(2020). https://pubs.acs.org/doi/10.1021/acs.accounts.0c00626

[35] ZHEN-YU SUN, TAO MA, HENG-CONG TAO et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem, 3, 560-587(2017). https://linkinghub.elsevier.com/retrieve/pii/S2451929417303996

[36] LI-MING WANG, WEN-LONG CHEN, DOU-DOU ZHANG et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev, 48, 5310-5349(2019). http://xlink.rsc.org/?DOI=C9CS00163H

[37] XING-WANG ZHUA, SHU-QUAN HUANG, QING YU et al. In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Appl. Catal. B Environ., 269, 118760(2020). https://linkinghub.elsevier.com/retrieve/pii/S0926337320301752

[38] XIAO-YU CHEN, YONG ZHOU, QI LIU et al. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl. Mater. Interfaces, 4, 3372-3377(2012). https://pubs.acs.org/doi/10.1021/am300661s

[39] XING-CHEN JIAO, XIAO-DONG LI, XIU-YU JIN et al. Partially oxidized SnS2 atomic layers achieving efficient visible- light-driven CO2 reduction. J. Am. Chem. Soc., 139, 18044-18051(2017). https://pubs.acs.org/doi/10.1021/jacs.7b10287

[40] QI LIU, YONG ZHOU, JIAHUI KOU et al. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J. Am. Chem. Soc., 132, 14385-14387(2010). https://pubs.acs.org/doi/10.1021/ja1068596

[41] PING LI, YONG ZHOU, WEN-GUANG TU et al. Direct growth of Fe2V4O13 nanoribbons on a stainless-steel mesh for visible-light photoreduction of CO2 into renewable hydrocarbon fuel and degradation of gaseous isopropyl alcohol. ChemPlusChem, 78, 274-278(2013). https://onlinelibrary.wiley.com/doi/10.1002/cplu.201200289

[42] YONG ZHOU, ZHONG-PING TIAN, ZONG-YAN ZHAO et al. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl. Mater. Interfaces, 3, 3594-3601(2011). https://pubs.acs.org/doi/10.1021/am2008147

[43] JUAN SU, GUO-DONG LI, XIN-HAO LI et al. 2D/2D heterojunctions for catalysis. Adv. Sci., 6, 1801702(2019). https://onlinelibrary.wiley.com/toc/21983844/6/7

[44] SI-BO WANG, YUAN GUAN BU, XIONG WEN et al. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc., 140, 5037-5040(2018). https://pubs.acs.org/doi/10.1021/jacs.8b02200

[45] YANG-EN ZHOU, YONG-FAN ZHANG, MOU-SHENG LIN et al. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun., 6, 8340(2015). https://doi.org/10.1038/ncomms9340

[46] WEN-GUANG TU, YONG ZHOU, SHI-CHAO FENG et al. Hollow spheres consisting of Ti0.91O2/CdS nanohybrids for CO2 photofixation. Chem. Commun., 51, 13354-13357(2015). http://xlink.rsc.org/?DOI=C5CC03905C

[47] WA GAO, LU WANG, CHAO GAO et al. Exquisite design of porous carbon microtubule-scaffolding hierarchical In2O3-ZnIn2S4 heterostructures toward efficient photocatalytic conversion of CO2 into CO. Nanoscale, 12, 14676-14681(2020). http://xlink.rsc.org/?DOI=C9NR10959E

[48] TONDA SURENDAR, KUMAR SANTOSH, BHARDWAJ MONIKA et al. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl. Mater. Interfaces, 10, 2667-2678(2018). https://pubs.acs.org/doi/10.1021/acsami.7b18835

[50] QIU-TONG HAN, LIANG LI, WA GAO et al. Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO2 photoreduction. ACS Appl. Mater. Interfaces, 13, 15092-15100(2021). https://pubs.acs.org/doi/10.1021/acsami.0c21266

[51] YONG YANG, JIA-JIA WU, TING-TING XIAO et al. Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-Scheme photocatalyst for efficient and selective CO2 reduction. Appl. Catal. B Environ., 255, 117771(2019). https://linkinghub.elsevier.com/retrieve/pii/S0926337319305107

[52] WAN-KUEN JO, SANTOSH KUMAR, SALVADOR ESLAVA et al. Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels. Appl. Catal. B Environ., 239, 586-598(2018). https://linkinghub.elsevier.com/retrieve/pii/S092633731830794X

[53] WEN-GUAG TU, YONG ZHOU, QI LIU et al. Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Adv. Funct. Mater., 22, 1215-1221(2012). http://doi.wiley.com/10.1002/adfm.v22.6

[54] SHI-CHAO FENG, XIAO-YU CHEN, YONG ZHOU et al. Na2V6O16·xH2O nanoribbons: large-scale synthesis and visible- light photocatalytic activity of CO2 into solar fuels. Nanoscale, 6, 1896-1900(2014). http://xlink.rsc.org/?DOI=C3NR05219B

[55] SHAO-WEN CAO, BAO-JIA SHEN, TONG TONG et al. 2D/2D heterojunction of ultrathin MXene / Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater., 28, 1800136(2018). http://doi.wiley.com/10.1002/adfm.v28.21

[56] LIANG LI, YONG YANG, LIU-QING YANG et al. 3D hydrangea-like InVO4/Ti3C2Tx hierarchical heterosystem collaborating with 2D/2D interface interaction for enhanced photocatalytic CO2 reduction. ChemNanoMat, 7, 815-823(2021). https://onlinelibrary.wiley.com/toc/2199692x/7/7

[57] MENG WANG, QIU-TONG HAN, YONG ZHOU et al. TiO2 nanosheet-anchoring Au nanoplates: high-energy facet and wide spectra surface plasmon-promoting photocatalytic efficiency and selectivity for CO2 reduction. RSC Adv., 6, 81510-81516(2016). http://xlink.rsc.org/?DOI=C6RA14821B

[58] JUN XIONG, JUN DI, JIE-XIANG XIA et al. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater.,, 28, 1801983(2018). http://doi.wiley.com/10.1002/adfm.v28.39

[60] LIANG LIANG, XIAO-DONG LI, YONG-FU SUN et al. Infrared light-driven CO2 overall splitting at room temperature. Joule, 2, 1004-1016(2018). https://linkinghub.elsevier.com/retrieve/pii/S2542435118300886

Wa GAO, Yujie XIONG, Congping WU, Yong ZHOU, Zhigang ZOU. Recent Progress on Photocatalytic CO2 Reduction with Ultrathin Nanostructures[J]. Journal of Inorganic Materials, 2022, 37(1): 3
Download Citation