• Photonics Research
  • Vol. 12, Issue 4, 730 (2024)
Jiarui Li1, Taoran Le1, Hongyuan Zhang2, Haoyun Wei1, and Yan Li1、*
Author Affiliations
  • 1State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 2Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
  • show less
    DOI: 10.1364/PRJ.509922 Cite this Article Set citation alerts
    Jiarui Li, Taoran Le, Hongyuan Zhang, Haoyun Wei, Yan Li. High-speed impulsive stimulated Brillouin microscopy[J]. Photonics Research, 2024, 12(4): 730 Copy Citation Text show less
    References

    [1] D. E. Discher, P. Janmey, Y.-L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science, 310, 1139-1143(2005).

    [2] K. H. Vining, D. J. Mooney. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol., 18, 728-742(2017).

    [3] O. Chaudhuri, J. Cooper-White, P. A. Janmey. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 584, 535-546(2020).

    [4] R. Prevedel, A. Diz-Muñoz, G. Ruocco. Brillouin microscopy: an emerging tool for mechanobiology. Nat. Methods, 16, 969-977(2019).

    [5] J. Zhang, G. Scarcelli. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nat. Protoc., 16, 1251-1275(2021).

    [6] G. Scarcelli, S. H. Yun. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photonics, 2, 39-43(2008).

    [7] G. Scarcelli, W. J. Polacheck, H. T. Nia. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods, 12, 1132-1134(2015).

    [8] A. M. Eltony, P. Shao, S.-H. Yun. Measuring mechanical anisotropy of the cornea with Brillouin microscopy. Nat. Commun., 13, 1354(2022).

    [9] J. Zhang, M. Nikolic, K. Tanner. Rapid biomechanical imaging at low irradiation level via dual line-scanning Brillouin microscopy. Nat. Methods, 20, 677-681(2023).

    [10] I. Remer, R. Shaashoua, N. Shemesh. High-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy. Nat. Methods, 17, 913-916(2020).

    [11] C. Bevilacqua, J. M. Gomez, U.-M. Fiuza. High-resolution line-scan Brillouin microscopy for live imaging of mechanical properties during embryo development. Nat. Methods, 20, 755-760(2023).

    [12] J. Zhang, A. Fiore, S.-H. Yun. Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging. Sci. Rep., 6, 35398(2016).

    [13] C. Bevilacqua, H. Sánchez-Iranzo, D. Richter. Imaging mechanical properties of sub-micron ECM in live zebrafish using Brillouin microscopy. Biomed. Opt. Express, 10, 1420-1431(2019).

    [14] S. J. J. Kwok, I. A. Kuznetsov, M. Kim. Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy. Optica, 3, 469-472(2016).

    [15] M. Bailey, M. Alunni-Cardinali, N. Correa. Viscoelastic properties of biopolymer hydrogels determined by Brillouin spectroscopy: a probe of tissue micromechanics. Sci. Adv., 6, eabc1937(2020).

    [16] T. G. Seiler, P. Shao, A. Eltony. Brillouin spectroscopy of normal and keratoconus corneas. Am. J. Ophthalmol., 202, 118-125(2019).

    [17] P. Shao, A. M. Eltony, T. G. Seiler. Spatially-resolved Brillouin spectroscopy reveals biomechanical abnormalities in mild to advanced keratoconus in vivo. Sci. Rep., 9, 7467(2019).

    [18] T. Li, F. Li, X. Liu. Quantum-enhanced stimulated Brillouin scattering spectroscopy and imaging. Optica, 9, 959-964(2022).

    [19] G. Zanini, G. Scarcelli. Localization-assisted stimulated Brillouin scattering spectroscopy. APL Photon., 7, 056101(2022).

    [20] C. W. Ballmann, Z. Meng, A. J. Traverso. Impulsive Brillouin microscopy. Optica, 4, 124-128(2017).

    [21] B. Krug, N. Koukourakis, J. Guck. Nonlinear microscopy using impulsive stimulated Brillouin scattering for high-speed elastography. Opt. Express, 30, 4748-4758(2022).

    [22] S. P. O’Connor, D. A. Doktor, M. O. Scully. Spectral resolution enhancement for impulsive stimulated Brillouin spectroscopy by expanding pump beam geometry. Opt. Express, 31, 14604-14616(2023).

    [23] J. Li, H. Zhang, M. Lu. Sensitive impulsive stimulated Brillouin spectroscopy by an adaptive noise-suppression Matrix Pencil. Opt. Express, 30, 29598-29610(2022).

    [24] J. Li, H. Zhang, X. Chen. High-speed non-contact measurement of elasto-optic coefficient via laser-induced phonons. Appl. Phys. Lett., 121, 251102(2022).

    [25] T. A. Litovitz, C. M. Davis. Physical Acoustics: Principles and Methods, 2(1965).

    [26] C. J. Chan, C. Bevilacqua, R. Prevedel. Mechanical mapping of mammalian follicle development using Brillouin microscopy. Commun. Biol., 4, 1133(2021).

    [27] M. Lu, Y. Zhang, J. Li. Time-domain fit for improved contrast in quantitative coherent anti-Stokes Raman spectroscopy. Opt. Express, 31, 25571-25584(2023).

    Jiarui Li, Taoran Le, Hongyuan Zhang, Haoyun Wei, Yan Li. High-speed impulsive stimulated Brillouin microscopy[J]. Photonics Research, 2024, 12(4): 730
    Download Citation