• Acta Optica Sinica
  • Vol. 41, Issue 12, 1206001 (2021)
Jiuhang Nan1 and Yiping Han2、*
Author Affiliations
  • 1School of Communication Engineering, Xidian University, Xi'an, Shaanxi 710071, China
  • 2Department of Applied Physics, School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
  • show less
    DOI: 10.3788/AOS202141.1206001 Cite this Article Set citation alerts
    Jiuhang Nan, Yiping Han. Dual-Channel Multiband Vortex Optical Communication[J]. Acta Optica Sinica, 2021, 41(12): 1206001 Copy Citation Text show less
    References

    [1] Lee E J. Chan V W S. Part 1: optical communication over the clear turbulent atmospheric channel using diversity[J]. IEEE Journal on Selected Areas in Communications, 22, 1896-1906(2004). http://dl.acm.org/citation.cfm?id=2315113

    [2] Wang F, Liu X L, Cai Y J et al. Propagation of partially coherent beam in turbulent atmosphere: a review[J]. Progress in Electromagnetics Research, 150, 123-143(2015). http://www.researchgate.net/publication/276901641_Propagation_of_Partially_Coherent_Beam_in_Turbulent_Atmosphere_A_Review

    [3] Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations[J]. Optics Letters, 36, 4104-4106(2011).

    [4] Berman G P, Bishop A R, Chernobrod B M et al. Suppression of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam[J]. Optics Communications, 280, 264-270(2007). http://www.sciencedirect.com/science/article/pii/S0030401807008644

    [5] Xiao X F, Voelz D. Wave optics simulation of partially coherent and partially polarized beam propagation in turbulence[J]. Proceedings of SPIE, 7464, 74640T(2009). http://spie.org/Publications/Proceedings/Paper/10.1117/12.829336

    [6] Avramov-Zamurovic S, Nelson C. Experimental study: underwater propagation of polarized flat top partially coherent laser beams with a varying degree of spatial coherence[J]. Optics Communications, 424, 54-62(2018).

    [7] Gibson G, Courtial J, Padgett M J et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 12, 5448-5456(2004).

    [8] Guo Z Y, Gong C F, Liu H J et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electronic Engineering, 47, 190593(2020).

    [9] Zhao W, Zhao M M, Wang S et al. Influence of near ground phase vortex on correction of adaptive optics[J]. Chinese Journal of Quantum Electronics, 37, 466-476(2020).

    [10] Boyd R W, Rodenburg B, Mirhosseini M et al. Influence of atmospheric turbulence on the propagation of quantum states of light using plane-wave encoding[J]. Optics Express, 19, 18310-18317(2011).

    [11] Wang Z X, Zhang N, Yuan X C et al. High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication[J]. Optics Express, 19, 482-492(2011).

    [12] Guo S F, Liu K, Sun H X et al. Generation of higher-order Laguerre-Gaussian beams by liquid crystal spatial light modulators[J]. Acta Sinica Quantum Optica, 21, 86-92(2015).

    [13] Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185(1992).

    [14] Indebetouw G, Korwan D R. Model of vortices nucleation in a photorefractive phase-conjugate resonator[J]. Journal of Modern Optics, 41, 941-950(1994).

    [15] Shao X L, Ma J S, Hou L X et al. Generation of high-order Hermite-Gaussian modes directly in gas lasers[J]. Optical Instruments, 35, 20-23(2013).

    [16] He D, Yan H W, Lü B D et al. Evolution and composite optical vortices of Hermite-Gaussian vortex beams[J]. Chinese Journal of Lasers, 36, 2023-2029(2009).

    [17] Zhang M M. Study on the propagation characteristics of off-axis vortex beams[D]. Nanjing: Nanjing University of Science and Technology(2014).

    [18] Nowack R L. A tale of two beams: an elementary overview of Gaussian beams and Bessel beams[J]. Studia Geophysica et Geodaetica, 56, 355-372(2012). http://link.springer.com/article/10.1007%2Fs11200-011-9054-0

    [19] Zhao S M, Leach J, Gong L Y et al. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states[J]. Optics Express, 20, 452-461(2012).

    [20] Liu M W, Li Y C. Propagation of OFDM-OAM optical signal in atmospheric turbulence[J]. Acta Optica Sinica, 39, 0706002(2019).

    [21] Zhang N N, Shan X, Zhang Y G et al. Simulated experiment of the light intensity influenced by non-Kolmogorov turbulence[J]. Acta Photonica Sinica, 47, 0601002(2018).

    [22] Andrews L C. An analytical model for the refractive index power spectrum and its application to optical scintillations in the atmosphere[J]. Journal of Modern Optics, 39, 1849-1853(1992). http://www.tandfonline.com/doi/abs/10.1080/09500349214551931

    [23] Smirnov E A, Timoshenko D M, Andrianov S N et al. Comparison of regularization methods for ImageNet classification with deep convolutional neural networks[J]. AASRI Procedia, 6, 89-94(2014). http://www.sciencedirect.com/science/article/pii/S2212671614000146

    [24] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 770-778(2016).

    [25] Simonyan K. -04-10)[2020-12-10]. https:∥arxiv., org/abs/1409, 1556(2015).

    [26] Szegedy C, Vanhoucke V, Ioffe S et al. Rethinking the inception architecture for computer vision[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA., 2818-2826(2016).

    Jiuhang Nan, Yiping Han. Dual-Channel Multiband Vortex Optical Communication[J]. Acta Optica Sinica, 2021, 41(12): 1206001
    Download Citation