• Journal of Inorganic Materials
  • Vol. 34, Issue 1, 1 (2019)
Ren-Yan WANG, Lin GAN, Tian-You ZHAI, [in Chinese], [in Chinese], and [in Chinese]
Author Affiliations
  • State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.15541/jim20180171 Cite this Article
    Ren-Yan WANG, Lin GAN, Tian-You ZHAI, [in Chinese], [in Chinese], [in Chinese]. ReX2 (X=S, Se): A New Opportunity for Development of Two-dimensional Anisotropic Materials[J]. Journal of Inorganic Materials, 2019, 34(1): 1 Copy Citation Text show less
    References

    [1] C GONG, W CHEN, Y ZHANG et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv. Sci, 4, 1700231(2017).

    [2] R FEI, J TICE, H TIAN et al. Low-symmetry two-dimensional materials for electronic and photonic applications. Nano Today, 11, 763-777(2016).

    [3] R RYDER C, X LIU, A WELLS S et al. Resolving the in-plane anisotropic properties of black phosphorus. Small Methods, 1, 1700143(2017).

    [4] C JIA Y, H WANG, N XIA F et al. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 5, 4458(2014).

    [5] D ZHAO L, Y ZHANG, H LO S et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 508, 373-377(2014).

    [6] W YANG, C LIU S, Y YANG et al. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region.. Am. Chem. Soc., 140, 4150-4156(2018).

    [7] L CHEN, J XU, W DAI Y et al. A two-dimensional semiconductor transistor with boosted gate control and sensing ability. Sci.Adv.(2017).

    [8] H KANG D, J SHIM, S OH et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun., 7, 13413(2016).

    [9] L HUANG, X WANG, Y PENG et al. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p-n heterojunctions. Nano Res., 9, 507-516(2016).

    [10] S KIM, A DATHBUN, Y KIM et al. Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett., 17, 2999-3005(2017).

    [11] B MOHAMMED O, N PRASAD, P MOVVA H C et al. ReS2-based interlayer tunnel field effect transistor. J. Appl. Phys, 122, 245701(2017).

    [12] M CORBETT C, A RAI, C MCCLELLAN et al. Field effect transistors with current saturation and voltage gain in ultrathin ReS2. ACS Nano, 9, 363-370(2015).

    [13] J CHO A, D NAMGUNG S, H KIM et al. Electric and photovoltaic characteristics of a multi-layer ReS2/ReSe2 heterostructure. APL Materials, 5, 076101(2017).

    [14] E ZHANG, Y JIN, X YUAN et al. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater., 25, 4076-4082(2015).

    [15] E ZHANG, Z LI, P WANG et al. Tunable ambipolar polarization- sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano, 10, 8067-8077(2016).

    [16] D REN D, K QIN J, Z SHAO W et al. Photoresponse enhancement in monolayer ReS2 phototransistor decorated with CdSe-CdS-ZnS quantum dots. ACS Appl. Mater. Inter., 9, 39456-39463(2017).

    [17] S TONGAY, Y LI, S YANG et al. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale, 6, 7226-7231(2014).

    [18] Y CUI, X LIU, F LU. Nonlinearsaturable and polarization- induced absorption of rhenium disulfide. Sci. Rep., 7, 40080(2017).

    [19] G MENDES R, S TAN, Q ZHANG et al. Extremely weak Van Der Waals coupling in vertical ReS2 nanowalls for high-current- density lithium-ion batteries. Adv. Mater., 28, 2616-2623(2016).

    [20] Y CHEN, F QI, B ZHENG et al. Hierarchical architecture of ReS2/rGO composites with enhanced electrochemical properties for lithium-ion batteries. Appl. Surf. Sci., 413, 123-128(2017).

    [21] F QI, Y CHEN, J HE et al. Few-layered ReS2 nanosheets grown on carbon nanotubes: a highly efficient anode for high-performance lithium-ion batteries. Chem. Eng. J., 315, 10-17(2017).

    [22] B ZHENG, F QI, Y CHEN et al. 3D chrysanthemum-like ReS2 microspheres composed of curly few-layered nanosheets with enhanced electrochemical properties for lithium-ion batteries.. Mater. Sci., 52, 3622-3629(2017).

    [23] N ESCALONA. LLAMBIAS F J G, VRINAT M, et al. Highly active ReS2/gamma-Al2O3 catalysts: effect of calcination and activation over thiophene hydrodesulfurization. Catal. Commun., 8, 285-288(2007).

    [24] N PAWELEC B, N ZEPEDA T, A ALIAGA J et al. Microspherical ReS2 as a high-performance hydrodesulfurization catalyst. Catal. Lett., 147, 1243-1251(2017).

    [25] C SEPULVEDA, N ESCALONA, R GARCIA et al. Hydrodeoxygenation and hydrodesulfurization co-processing over ReS2 supported catalysts. Catal. Today, 195, 101-105(2012).

    [26] J FRANCISCO ARAYA, T ZEPEDA, J ANTONIO ALIAGA et al. 7(12): 7120377-1-11. Catalysts(2017).

    [27] B ZHENG, F QI, X WANG et al. Self-assembled chrysanthemum- like microspheres constructed by few-layer ReSe2 nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta, 224, 593-599(2017).

    [28] C HO T, M MCCONNACHIE J, Q SHEN et al. Kinetic characterization of unsupported ReS2 as hydroprocessing catalyst.. Catal., 276, 114-122(2010).

    [29] J TAN, L LI, J GAO et al. Vertically oriented arrays of ReS2 nanosheets for electrochemical energy storage and electrocatalysis. Nano Lett., 16, 3780-3787(2016).

    [30] K DAVEY, , M RAHMAN. Advent of 2D rhenium disulfide (ReS2): fundamentals to applications. Adv. Funct. Mater., 27, 1606129(2017).

    [31] L GAN, S BHATTI A, M HAFEEZ et al. Rhenium dichalcogenides (ReX2, X = S or Se): an emerging class of TMDs family. Mater. Chem. Front., 1, 1917-1932(2017).

    [32] F JELLINEK, C WILDERVANCK J. The dichalcogenides of technetium and rhenium. Journal of the Less Common Metals, 24, 73-81(1971).

    [33] , G YU Z, Y CAI. Robust direct bandgap characteristics of one- and two-dimensional ReS2. Sci. Rep., 5, 13783(2015).

    [34] G YE, Y GONG, K KEYSHAR et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv. Mater., 27, 4640-4648(2015).

    [35] Y FENG, W ZHOU, Y WANG et al. Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys. Rev. B, 92, 054110(2015).

    [36] Y LIN D, C KAO Y, T HUANG et al. Anomalous structural phase transition properties in ReSe2 and Au-doped ReSe2. J. Chem. Phys., 137, 024509(2012).

    [37] K TIONG K, H HO C, S HUANG Y. The electrical transport properties of ReS2 and ReSe2 layered crystals. Solid State. Commun., 111, 635-640(1999).

    [38] K KALANTAR-ZADEH, H WANG Q, A KIS et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699-712(2012).

    [39] W KIM S, H YANG, H LEE Y et al. Structural and quantum- state phase transitions in Van Der Waals layered materials. Nat. Phys., 13, 931-937(2017).

    [40] G EDA, M CHHOWALLA, S SHIN H et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 5, 263-275(2013).

    [41] L JIANG, H LI, Z YIN et al. Single-layer MoS2 phototransistors. ACS Nano, 6, 74-80(2012).

    [42] J KANG, S TONGAY, W FAN et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett., 14, 3185-3190(2014).

    [43] Y ZHANG, A SPLENDIANI, L SUN et al. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10, 1271-1275(2010).

    [44] T LI, G GALLI. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C, 111, 16192-16196(2007).

    [45] P BOTTGER, P TONNDORF, R SCHMIDT et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express, 21, 4908-4916(2013).

    [46] S DALE, L HART, S HOYE et al. Rhenium dichalcogenides: layered semiconductors with two vertical orientations. Nano Lett., 16, 1381-1386(2016).

    [47] S HART L, L WEBB J, S DALE et al. Electronic bandstructure and Van Der Waals coupling of ReSe2 revealed by high-resolution angle-resolved photoemission spectroscopy. Sci. Rep, 7, 5145(2017).

    [48] L WEBB J, S HART L, D WOLVERSON et al. Electronic band structure of ReS2 by high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. B, 96, 115205(2017).

    [49] D WOLVERSON, S KAZEMI A, S CRAMPIN et al. Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor. ACS Nano, 8, 11154-11164(2014).

    [50] C KO, H SAHIN, S TONGAY et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling, 5, 3252(2014).

    [51] Y WANG, E LIU, Y FU et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun., 6, 6991(2015).

    [52] D VOIRY, H YAMAGUCHI, G EDA et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett., 11, 5111-5116(2011).

    [53] J HONE, F MAK K, C LEE et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

    [54] L CHU, W ZHAO, Z GHORANNEVIS et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano, 7, 791-797(2013).

    [55] N PEREA-LOPEZ, R GUTIERREZ H, L ELIAS A et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett., 13, 3447-3454(2013).

    [56] H ZHONG, H ZHAO, J WU et al. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res., 8, 3651-3661(2015).

    [57] S TONGAY, J ZHOU, C ATACA et al. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett., 12, 5576-5580(2012).

    [58] E LORCHAT, S BERCIAUD, G FROEHLICHER. Splitting of interlayer shear modes and photon energy dependent anisotropic raman response in N-layer ReSe2 and ReS2. ACS Nano, 10, 2752-2760(2016).

    [59] W WANG, Q ZHANG, X KONG et al. Edge-to-edge oriented self-assembly of ReS2 nanoflakes.. Am. Chem. Soc., 138, 11101-11104(2016).

    [60] Q ZHANG, W WANG, J ZHANG et al. Thermally induced bending of ReS2 nanowalls. Adv. Mater., 30, 1704585(2018).

    [61] A JINDAL, B JARIWALA, D VOIRY et al. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater., 28, 3352-3359(2016).

    [62] L XING, D HU, G XU et al. Two-dimensional semiconductors grown by chemical vapor transport. Angew Chem. Int. Ed., 56, 3611-3615(2017).

    [63] D WOOD J, K SANGWAN V, J KANG et al. Layer-by-layer sorting of rhenium disulfide via high-density isopycnic density gradient ultracentrifugation. Nano Lett., 16, 7216-7223(2016).

    [64] A JAWAID, D NEPAL, K PARK et al. Mechanism for liquid phase exfoliation of MoS2. Chem. Mater., 28, 337-348(2015).

    [65] J ZHENG, H ZHANG, S DONG et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun., 5, 2995(2014).

    [66] N COLEMAN J, , M LOTYA. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331, 568-571(2011).

    [67] M CHHOWALLA, G KANATZIDIS M, V NICOLOSI et al. Liquid exfoliation of layered materials. Science, 340, 1226419-1226419(2013).

    [68] Z YAN, C HUO, X SONG et al. 2D materials via liquid exfoliation: a review on fabrication and applications. Sci. Bull., 60, 1994-2008(2015).

    [69] J SUN, X ZHAO, X MA et al. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano, 10, 2159-2166(2016).

    [70] Y ITO, T FUJITA, Y TAN et al. Chemically exfoliated ReS2 nanosheets. Nanoscale, 6, 12458-12462(2014).

    [71] X DENG H, Z WANG, K XU et al. Sulfur vacancy activated field effect transistors based on ReS2 nanosheets. Nanoscale, 7, 15757-15762(2015).

    [72] B KANG, Y CHOI, Y KIM et al. Direct synthesis of large-area continuous ReS2 films on a flexible glass at low temperature. 2D Materials, 4, 025057(2017).

    [73] Y XU C, K QIN J, Z SHAO W et al. Chemical vapor deposition growth of degenerate p-type Mo-doped ReS2 films and their homojunction. ACS Appl. Mater. Inter., 9, 15583-15591(2017).

    [74] H LI, M HAFEEZ, L GAN et al. Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors. Adv. Funct. Mater., 26, 4551-4560(2016).

    [75] K WU, A SUSLU, B CHEN et al. Controlling structural anisotropy of anisotropic 2D layers in pseudo-1D/2D material heterojunctions. Adv. Mater., 29, 1701201(2017).

    [76] F CUI, J HONG, Q FENG et al. Synthesis of large-size 1T ' ReS2xSe2(1-x) alloy monolayer with tunable bandgap and carrier type. Adv. Mater., 29, 1705015(2017).

    [77] C WANG, F CUI, X LI et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater., 28, 5019-5024(2016).

    [78] H LI, M HAFEEZ, L GAN et al. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater., 28, 8296-8301(2016).

    [79] J LEWIS D, N AL-DULAIMI, A LEWIS E et al. Sequential bottom-up and top-down processing for the synthesis of transition metal dichalcogenide nanosheets: the case of rhenium disulfide (ReS2). Chem. Commun., 52, 7878-7881(2016).

    [80] N ZINK, A YELLA, A THERESE H et al. Large scale MOCVD synthesis of hollow ReS2 nanoparticles with nested fullerene-like structure. Chem. Mater., 20, 3587-3593(2008).

    [81] K YU H, S YOON, S KIM et al. Growth of two-dimensional rhenium disulfide (ReS2) nanosheets with a few layers at low temperature. Crystengcomm, 19, 5341-5345(2017).

    [82] A SLABON, A CHATURVEDI, P HU et al. Rapid synthesis of transition metal dichalcogenide few-layer thin crystals by the microwave-induced-plasma assisted method. J. Cryst. Growth, 450, 140-147(2016).

    [83] N AL-DULAIMI, L ZHONG X, J LEWIS D et al. Chemical vapour deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors. J. Mater. Chem. C, 4, 2312-2318(2016).

    [84] N SAVJANI, N AL-DULAIMI, A LEWIS E et al. The influence of precursor on rhenium incorporation into Re-doped MoS2 (Mo1-xRexS2) thin films by aerosol-assisted chemical vapour deposition (AACVD). J. Mater. Chem. C, 5, 9044-9052(2017).

    [85] H CHOUDHURY T, N WALTER T, H SIMCHI et al. Sulfidation of 2D transition metals (Mo, W, Re, Nb, Ta): thermodynamics, processing, and characterization. J. Mater. Sci., 52, 10127-10139(2017).

    [86] J BOROWIEC, P GILLIN W, C WILLIS M A et al. Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation. J. Phys: Condens. Matter(2018).

    [87] Z CHEN Y, K TIONG K, Y HU S et al. Growth and characterization of molybdenum-doped rhenium diselenide. Mater. Chem. Phys., 104, 105-108(2007).

    [88] F QI, Y CHEN, B ZHENG et al. Facile growth of large-area and high-quality few-layer ReS2 by physical vapour deposition. Mater. Lett., 184, 324-327(2016).

    [89] F CUI, Q FENG, X LI et al. Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res., 10, 2732-2742(2017).

    [90] X LI, Q FENG, F CUI et al. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale, 8, 18956-18962(2016).

    [91] B JIANG, Z XU, T ZHANG et al. Twinned growth behaviour of two-dimensional materials. Nat. Commun., 7, 13911(2016).

    [92] P CHEN, J WANG, Y LU et al. The fabrication of ReS2 flowers at controlled locations by chemical vapor deposition. Physica E, 89, 115-118(2017).

    [93] Y LI, K QIN J, Z SHAO W et al. Van der Waals epitaxy of large-area continuous ReS2 films on mica substrate. RSC Adv., 7, 24188-24194(2017).

    [94] P HU, F LIU, X HE et al. Chemical vapor deposition of high-quality and atomically layered ReS2. Small, 11, 5423-5429(2015).

    [95] Q YUE, S TONGAY, S YANG et al. High-performance few-layer Mo-doped ReSe2 nanosheet photodetectors. Sci. Rep., 4, 5442(2014).

    [96] K WU, S YANG, B CHEN et al. Domain architectures and grain boundaries in chemical vapor deposited highly anisotropic ReS2 monolayer films. Nano Lett., 16, 5888-5894(2016).

    [97] H LI, Y CHEN, L GAN et al. Achieving uniform monolayer transition metal dichalcogenides film on silicon wafer via silanization treatment: a typical study on WS2. Adv. Mater., 29, 160550(2017).

    [98] C YAN, L GAN, X ZHOU et al. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater., 27, 1702918(2017).

    [99] B JIN, P HUANG, Q ZHANG et al. Self-limited epitaxial growth of ultrathin non-layered CdS flakes for high-performance photodetectors. Adv. Funct. Mater., 28, 1800181(2018).

    [100] M JU, X LIANG, J LIU et al. Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals. Chem. Mater., 29, 6095-6103(2017).

    [101] Y XIAO, Q ZHANG, T ZHANG et al. Iodine-mediated chemical vapor deposition growth of metastable transition metal dichalcogenides. Chem. Mater., 29, 4641-4644(2017).

    [102] H YANG, W HUANG, L GAN et al. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition, 27, 1702448(2017).

    [103] Z LIN, Y GONG, G YE et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano, 9, 11658-11666(2015).

    [104] S ZHOU, D WANG, L GAN et al. Space-confined vapor deposition synthesis of two dimensional materials. Nano Res, 12274(2017).

    [105] J PARK, W LEE, G SONG J et al. Layer-controlled, wafer scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano, 7, 11333-11340(2013).

    [106] Y JANG, , S YEO. Wafer-scale, conformal and direct growth of MoS2 thin films by atomic layer deposition. Appl. Surf. Sci., 365, 160-165(2016).

    [107] N MEMARIAN, I CONCINA, M ROZATI S et al. Deposition of nanostructured CdS thin films by thermal evaporation method: effect of substrate temperature. Mater, 10, 773(2017).

    [108] M MAZUR, T HOWIND, D GIBSON et al. Modification of various properties of HfO2 thin films obtained by changing magnetron sputtering conditions. Surf. Coat. Technol., 320, 426-431(2017).

    [109] Z ZHU, W WAN, L ZHAN et al. MoS2 materials synthesized on SiO2/Si substrates via MBE. J. Phys.: Conf. Ser., 864, 012037(2017).

    [110] J HAMALAINEN, K MIZOHATA, M MATTINEN et al. Atomic layer deposition of rhenium disulfide. Adv. Mater, 30, 1703622(2018).

    [111] M GANOSE A, D BISWAS, R YANO et al. Narrow-band anisotropic electronic structure of ReS2. Phys. Rev. B, 96, 085205(2017).

    [112] S ZHENG, X HE, F LIU et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater., 26, 1169-1177(2016).

    [113] C KAO C, Y LIN D, C HUANG C et al. A comprehensive study on the optical properties of thin gold-doped rhenium disulphide layered single crystals. Jpn. J. Appl. Phys., 2013, 52(4): 04CH11-1-6.

    [114] H HO C, C WU C, H HSIEH M et al. Dichroic optical and electrical properties of rhenium dichalcogenides layer compounds.. Alloys Compd., 442, 245-248(2007).

    [115] J HE, Q CUI, Z BELLUS M et al. Transient absorption measurements on anisotropic monolayer ReS2. Small, 11, 5565-5571(2015).

    [116] A CHENET D, B ASLAN O, . Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photonics, 3, 96-101(2016).

    [117] Y LIN D, Y ZHENG J, . Piezoreflectance study of band-edge excitons of ReS2:Au. Jpn. J. Appl. Phys., 48, 052302(2009).

    [118] S WU, J GUO, Y SHAN et al. Phase-engineering-induced generation and control of highly anisotropic and robust excitons in few-layer ReS2.. Phys. Chem. Lett., 8, 2719-2724(2017).

    [119] W LEE H, C WU C, H HO C. Polarization sensitive behaviour of the band-edge transitions in ReS2 and ReSe2 layered semiconductors. J. Phys.: Condens. Matter, 16, 5937-5944(2004).

    [120] M DRUEPPEL, J NOKY, A ARORA et al. Highly anisotropic in-plane excitons in atomically thin and bulklike 1T’-ReSe2. Nano Lett., 17, 3202-3207(2017).

    [121] S SIM, V TRIFONOV A, D LEE et al. Ultrafast quantum beats of anisotropic excitons in atomically thin ReS2. Nat. Commun., 9, 351(2018).

    [122] D LEE, S SIM, M NOH et al. Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2. Nat. Commun., 7, 13569(2016).

    [123] T LOW, A CHAVES, P AVOURIS et al. Anisotropic exciton Stark shift in black phosphorus(2015).

    [124] Y TATSUMI, S HUANG, R SAITO et al. 28(35): 353002-1-37(2016).

    [125] S ZHANG, N ZHANG, N MAO et al. Anomalous polarized raman scattering and large circular intensity differential in layered triclinic ReS2. ACS Nano, 11, 10366-10372(2017).

    [126] A LAPINSKA, J JUDEK, A TAUBE et al. 107(1): 013105- 1-5(2015).

    [127] Y SHEN, P MIAO, K QIN J et al. 1704079-1-8(2018).

    [128] A MCCREARY, R SIMPSON J, Y WANG et al. Intricate resonant Raman response in anisotropic ReS2. Nano Lett., 17, 5897-5907(2017).

    [129] D RHODES, A MCCREARY, R PRADHAN N et al. Metal to insulator quantum-phase transition in few-layered ReS2. Nano Lett., 15, 8377-8384(2015).

    [130] B ASLAN O, A CHENET D, Y HUANG P et al. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett., 15, 5667-5672(2015).

    [131] Z YIN, A YAN J, R HE et al. Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy. Nano Lett., 16, 1404-1409(2016).

    [132] J WU, N MAO, L XIE et al. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. Int. Ed., 127, 2396-2399(2015).

    [133] W SHEN, S WU, J TAO et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano, 9, 11362-11370(2015).

    [134] F XIA, H WANG, . Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun, 5, 4458(2014).

    [135] X KONG, X HU Z, J QIAO et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun., 5, 4475(2014).

    [136] L LI, P GONG, W WANG et al. Strong in-plane anisotropies of optical and electrical response in layered dimetal chalcogenide. ACS Nano, 11, 10264-10272(2017).

    [137] C LIN Y, H YEH C, P KOMSA H et al. Single-layer ReS2: two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano, 9, 11249-11257(2015).

    [138] H LI, L LI, L PI et al. Photodetectors based on two-dimensional semiconductors: progress, opportunity and challenge. Chin. Sci. Bull., 62, 3134-3153(2017).

    [139] T ZHANG, K YAN, Z WEI et al. Near-infrared photoresponse of one-sided abrupt MAPbI3/TiO2 heterojunction through a tunneling process. Adv. Funct. Mater., 26, 8545-8554(2016).

    [140] C TANG, L TAO, L ZENG et al. High-responsivity UV-Vis photodetector based on transferable WS2 film deposited by magnetron sputtering. Sci. Rep., 6(2016).

    [141] W WANG, Y CHAI, L LI et al. Few-layered PtS2 phototransistor on h-BN with high gain. Adv. Funct. Mater, 27(2017).

    [142] . Thermal conduction in single-layer black phosphorus: highly anisotropic?. Nanotechnology, 26, 055701(2015).

    [143] Z LUO, J MAASSEN, Y DENG et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun., 6, 8572(2015).

    [144] F YANG, J SUH, S LEE et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun., 6, 8573(2015).

    [145] L MA J, Z HAN, N CHEN Y et al. Strong anisotropic thermal conductivity of monolayer WTe2. 2D Materials, 3(2016).

    [146] Y SUN H, J ZHOU, G LIU et al. First-principles study of lattice thermal conductivity of Td-WTe2. New J. Phys, 18(2016).

    [147] , N MINGO, J CARRETE. Low thermal conductivity and triaxial phononic anisotropy of SnSe. Appl. Phys. Lett., 105(2014).

    [148] L LI Y, X SHI, D REN D et al. Investigation of the anisotropic thermoelectric properties of oriented polycrystalline SnSe. Energies, 8, 6275-6285(2015).

    [149] J WANG X, Q GUO R, D KUANG Y et al. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys. Rev. B, 92(2015).

    [150] C HE, Z SUN B, Z MA et al. Anisotropic thermoelectric properties of layered compounds in SnX2(X = S, Se): a promising thermoelectric material. Phys. Chem. Chem. Phys., 17, 29844-29853(2015).

    [151] H JANG, D WOOD J, R RYDER C et al. 3D anisotropic thermal conductivity of exfoliated rhenium disulfide. Adv. Mater, 29(2017).

    [152] H ZHU, K ESHUN, S YU et al. Strain-engineering the anisotropic electrical conductance in ReS2 monolayer. Appl. Phys. Lett., 108, 191901(2016).

    [153] M MENG, G SHI C, T LI et al. Magnetism induced by cationic defect in monolayer ReSe2 controlled by strain engineering. Appl. Surf. Sci., 425, 696-701(2017).

    [154] M MIN Y, Q WANG A, M REN X et al. Defect formation and electronic structure regulated by strain engineering in ReS2. Appl. Surf. Sci., 427, 942-948(2018).

    [155] H ZHOU Z, Y HE C, C WEI B et al. Anisotropic Raman scattering and mobility in monolayer 1Td-ReS2 controlled by strain engineering. Appl. Surf. Sci., 404, 276-281(2017).

    [156] , O ZHANG X. Strain-induced magnetism in ReS2 monolayer with defects. Chin. Phys. B, 25(2016).

    [157] H LI T, H ZHOU Z, H GUO J et al. Raman scattering modification in monolayer ReS2 controlled by strain engineering. Chin. Phys. Lett, 33, 046201(2016).

    [158] Y LI, L LI Y, C TANG. Strain engineering and photocatalytic application of single-layer ReS2. Int.. Hydrogen Energy, 42, 161-167(2017).

    [159] C KAO Y, Y LIN D, T HUANG et al. Anomalous structural phase transition properties in ReSe2 and Au-doped ReSe2. J. Chem. Phys(2012).

    [160] J WANG, C JIN, Y YAN et al. Associated lattice and electronic structural evolutions in compressed multilayer ReS2.. Phys. Chem. Lett., 8, 3648-3655(2017).

    [161] Y MA, J DU, D HOU et al. High pressure X-ray diffraction study of ReS2. J. Phys. Chem. Solids, 71, 1571-1575(2010).

    [162] H MIRHOSSEINI, A ELGHAZALI M, G NAUMOV P et al. Pressure-induced metallization in layered ReSe2. J. Phys. Condens Matter(2017).

    [163] S YANG, C WANG, H SAHIN et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett., 15, 1660-1666(2015).

    [164] D ZHOU, Y ZHOU, C PU et al. Pressure-induced metallization and superconducting phase in ReS2. npj. Quantum Mater., 2, 1-7(2017).

    [165] T SENGER R, M YAGMURCUKARDES, C BACAKSIZ et al. Hydrogen-induced structural transition in single layer ReS2. 2D Materials, 4, 035013(2017).

    [166] H JO S, Y PARK H, H KANG D et al. Broad detection range rhenium diselenide photodetector enhanced by (3-aminopropyl) triethoxysilane and triphenylphosphine treatment. Adv. Mater., 28, 6711-6718(2016).

    [167] H PARK J, H ALI M, H KANG D. Rhenium diselenide (ReSe2) infrared photodetector enhanced by (3-aminopropyl) trimethoxysilane (APTMS) treatment. Org. Electron., 53, 14-19(2018).

    [168] Q LI, X ZHANG. Electronic and magnetic properties of nonmetal atoms adsorbed ReS2 monolayers. J. Appl. Phys, 118, 064306(2015).

    [169] H SHEN Y, L YIN T, M LUO. Structural, electronic, and magnetic properties of transition metal doped ReS2 monolayer. JETP Letters, 105, 255-259(2017).

    [170] R PANDEY, C LOH G. Robust magnetic domains in fluorinated ReS2 monolayer. Phys. Chem. Chem. Phys., 17, 18843-18853(2015).

    [171] , , O OBODO K. Influence of transition metal doping on the electronic and optical properties of ReS2 and ReSe2 monolayers. Phys. Chem. Chem. Phys., 19, 19050-19057(2017).

    Ren-Yan WANG, Lin GAN, Tian-You ZHAI, [in Chinese], [in Chinese], [in Chinese]. ReX2 (X=S, Se): A New Opportunity for Development of Two-dimensional Anisotropic Materials[J]. Journal of Inorganic Materials, 2019, 34(1): 1
    Download Citation