• Opto-Electronic Advances
  • Vol. 3, Issue 1, 190017-1 (2020)
Aiqin Hu1、2, Shuai Liu1、3, Jingyi Zhao1, Te Wen1, Weidong Zhang1, Qihuang Gong1、2, Yongqiang Meng3, Yu Ye1, and Guowei Lu1、2、*
Author Affiliations
  • 1State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of the Ministry of Education, School of Physics, Peking University, Beijing 100871, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
  • 3School of Materials Science and Engineering, Hebei University of Science and Tech-nology, Shijiazhuang 050018, China
  • show less
    DOI: 10.29026/oea.2020.190017 Cite this Article
    Aiqin Hu, Shuai Liu, Jingyi Zhao, Te Wen, Weidong Zhang, Qihuang Gong, Yongqiang Meng, Yu Ye, Guowei Lu. Controlling plasmon-exciton interactions through photothermal reshaping[J]. Opto-Electronic Advances, 2020, 3(1): 190017-1 Copy Citation Text show less
    References

    [1] M S Wang, W Li, L Scarabelli, B B Rajeeva, M Terrones et al. Plasmon-trion and plasmon-exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2. Nanoscale, 9, 13947-13955(2017).

    [2] J T Li, S K Cushing, F K Meng, T R Senty, A D Bristow et al. Plasmon-induced resonance energy transfer for solar energy conversion. Nat Photonics, 9, 601-607(2015).

    [3] M S Wang, A Krasnok, T Y Zhang, L Scarabelli, H Liu et al. Tunable fano resonance and plasmon-exciton coupling in single Au nanotriangles on monolayer WS2 at room temperature. Adv Mater, 30, 1705779(2018).

    [4] W Zhang, A O Govorov, G W Bryant. Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. Phys Rev Lett, 97, 146804(2006).

    [5] B Lee, J Park, G H Han, H S Ee, C H Naylor et al. Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett, 15, 3646-3653(2015).

    [6] X Z Liu, T Galfsky, Z Sun, F N Xia, E C Lin et al. Strong light-matter coupling in two-dimensional atomic crystals. Nat Photonics, 9, 30-34(2015).

    [7] D Zheng, S P Zhang, Q Deng, M Kang, P Nordlander et al. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett, 17, 3809-3814(2017).

    [8] J Cuadra, D G Baranov, M Wersäll, R Verre, T J Antosiewicz et al. Observation of tunable charged exciton polaritons in hybrid monolayer WS2-plasmonic nanoantenna system. Nano Lett, 18, 1777-1785(2018).

    [9] M Wersäll, J Cuadra, T J Antosiewicz, S Balci, T Shegai. Observation of mode splitting in photoluminescence of individual plasmonic nanoparticles strongly coupled to molecular excitons. Nano Lett, 17, 551-558(2017).

    [10] J X Wen, H Wang, W L Wang, Z X Deng, C Zhuang et al. Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett, 17, 4689-4697(2017).

    [11] W J Liu, B Lee, C H Naylor, H S Ee, J Park et al. Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice. Nano Lett, 16, 1262-1269(2016).

    [12] M E Kleemann, R Chikkaraddy, E M Alexeev, D Kos, C Carnegie et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat Commun, 8, 1296(2017).

    [13] W Gao, Y H Lee, R B Jiang, J F Wang, T X Liu et al. Localized and continuous tuning of monolayer MoS2 photoluminescence using a single shape-controlled Ag nanoantenna. Adv Mater, 28, 701-706(2016).

    [14] G M Akselrod, T Ming, C Argyropoulos, T B Hoang, Y X Lin et al. Leveraging nanocavity harmonics for control of optical processes in 2D semiconductors. Nano Lett, 15, 3578-3584(2015).

    [15] S Najmaei, A Mlayah, A Arbouet, C Girard, J Léotin et al. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2-Au nanostructures. Acs Nano, 8, 12682-12689(2014).

    [16] K C J Lee, Y H Chen, H Y Lin, C C Cheng, P Y Chen et al. Plasmonic gold nanorods coverage influence on enhancement of the photoluminescence of two-dimensional MoS2 monolayer. Sci Rep, 5, 16374(2015).

    [17] J T Liu, H Tong, Z H Wu, J B Huang, Y S Zhou. Greatly enhanced light emission of MoS2 using photonic crystal heterojunction. Sci Rep, 7, 16391(2017).

    [18] Z Wang, Z G Dong, Y H Gu, Y H Chang, L Zhang et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat Commun, 7, 11283(2016).

    [19] A D Johnson, F Cheng, Y Tsai, C K Shih. Giant enhancement of defect-bound exciton luminescence and suppression of band-edge luminescence in monolayer WSe2-Ag plasmonic hybrid structures. Nano Lett, 17, 4317-4322(2017).

    [20] Q X Wang, J Guo, Z J Ding, D Y Qi, J Z Jiang et al. Fabry-perot cavity-enhanced optical absorption in ultrasensitive tunable photodiodes based on hybrid 2D materials. Nano Lett, 17, 7593-7598(2017).

    [21] A Sobhani, A Lauchner, S Najmaei, C Ayala-Orozco, F F Wen et al. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl Phys Lett, 104, 031112(2014).

    [22] E Palacios, S Park, S Butun, L Lauhon, K Aydin. Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna. Appl Phys Lett, 111, 031101(2017).

    [23] S Butun, S Tongay, K Aydin. Enhanced light emission from large-area monolayer MoS2 using plasmonic nanodisc arrays. Nano Lett, 15, 2700-2704(2015).

    [24] K F Mak, C Lee, J Hone, J Shan, T F Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 105, 136805(2010).

    [25] K C Xu, J G Wu, C F Tan, G W Ho, A Wei et al. Ag-CuO-ZnO metal-semiconductor multiconcentric nanotubes for achieving superior and perdurable photodegradation. Nanoscale, 9, 11574-11583(2017).

    [26] M Rahmani, G Leo, I Brener, A V Zayats, S A Maier et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv, 1, 180021(2018).

    [27] P K Upputuri, M Pramanik. Microsphere-aided optical microscopy and its applications for super-resolution imaging. Opt Commun, 404, 32-41(2017).

    [28] L Zhang, R Gogna, W Burg, E Tutuc, H Deng. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat Commun, 9, 713(2018).

    [29] M Stührenberg, B Munkhbat, D G Baranov, J Cuadra, A B Yankovich et al. Strong light-matter coupling between plasmons in individual gold Bi-pyramids and excitons in mono- and multilayer WSe2. Nano Lett, 18, 5938-5945(2018).

    [30] J W Sun, H T Hu, D Zheng, D X Zhang, Q Deng et al. Light-emitting plexciton: exploiting plasmon-exciton interaction in the intermediate coupling regime. ACS Nano, 12, 10393-10402(2018).

    [31] J S Ross, P Klement, A M Jones, N J Ghimire, J Q Yan et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nanotechnol, 9, 268-272(2014).

    [32] K F Mak, K L He, C Lee, G H Lee, J Hone et al. Tightly bound trions in monolayer MoS2. Nat Mater, 12, 207-211(2013).

    [33] R Chikkaraddy, B De Nijs, F Benz, S J Barrow, O A Scherman et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [34] M Yorulmaz, S Khatua, P Zijlstra, A Gaiduk, M Orrit. Luminescence quantum yield of single gold nanorods. Nano Lett, 12, 4385-4391(2012).

    [35] Y B He, G W Lu, H M Shen, Y Q Cheng, Q H Gong. Strongly enhanced raman scattering of graphene by a single gold nanorod. Appl Phys Lett, 107, 053104(2015).

    [36] F Della Picca, M V Gutiérrez, A V Bragas, A F Scarpettini. Monitoring the photothermal reshaping of individual plasmonic nanorods with coherent mechanical oscillations. J Phys Chem C, 122, 29598-29606(2018).

    [37] J Wang, Y C Chen, X Chen, J M Hao, M Yan et al. Photothermal reshaping of gold nanoparticles in a plasmonic absorber. Opt Express, 19, 14726-14734(2011).

    [38] F Shafiei, F Monticone, K Q Le, X X Liu, T Hartsfield et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol, 8, 95-99(2013).

    [39] G W Lu, L Hou, T Y Zhang, J Liu, H M Shen et al. Plasmonic sensing via photoluminescence of individual gold nanorod. J Phys Chem C, 116, 25509-25516(2012).

    [40] H M Shen, R Y Chou, Y Y Hui, Y B He, Y Q Cheng et al. Directional fluorescence emission from a compact plasmonic-diamond hybrid nanostructure. Laser Photonics Rev, 10, 647-655(2016).

    [41] Z M Cao, Y B He, Y Q Cheng, J Y Zhao, G T Li et al. Nano-gap between a gold tip and nanorod for polarization dependent surface enhanced Raman scattering. Appl Phys Lett, 109, 233103(2016).

    [42] T Y Zhang, H M Shen, G W Lu, J Liu, Y B He et al. Single bipyramid plasmonic antenna orientation determined by direct photoluminescence pattern imaging. Adv Opt Mater, 1, 335-342(2013).

    [43] G W Lu, Y W Wang, R Y Chou, H M Shen, Y B He et al. Directional side scattering of light by a single plasmonic trimer. Laser Photonics Rev, 9, 530-537(2015).

    [44] Y B He, G W Lu, H M Shen, Y Q Cheng, Q H Gong. Strongly enhanced Raman scattering of graphene by a single gold nanorod. Appl Phys Lett, 107, 053104(2015).

    [45] Y B He, K Y Xia, G W Lu, H M Shen, Y Q Cheng et al. Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods. Nanoscale, 7, 577-582(2015).

    [46] J Y Zhao, Z M Cao, Y Q Cheng, J N Xu, T Wen et al. In situ optical study of gold nanorod coupling with graphene. Adv Opt Mater, 6, 1701043(2018).

    [47] K C Xu, Z Y Wang, C F Tan, N Kang, L W Chen et al. Uniaxially stretched flexible surface plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl Mater Interfaces, 9, 26341-26349(2017).

    [48] W J Zhao, Z Ghorannevis, L Q Chu, M Toh, C Kloc et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano, 7, 791-797(2013).

    [49] G W Lu, T Y Zhang, W Q Li, L Hou, J Liu et al. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod. J Phys Chem C, 115, 15822-15828(2011).

    [50] J Y Zhao, Y Q Cheng, H M Shen, Y Y Hui, T Wen et al. Light emission from plasmonic nanostructures enhanced with fluorescent nanodiamonds. Sci Rep, 8, 3605(2018).

    [51] P Anger, P Bharadwaj, L Novotny. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett, 96, 113002(2006).

    [52] G Zengin, M Wersäll, S Nilsson, T J Antosiewicz, M Käll et al. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys Rev Lett, 114, 157401(2015).

    Aiqin Hu, Shuai Liu, Jingyi Zhao, Te Wen, Weidong Zhang, Qihuang Gong, Yongqiang Meng, Yu Ye, Guowei Lu. Controlling plasmon-exciton interactions through photothermal reshaping[J]. Opto-Electronic Advances, 2020, 3(1): 190017-1
    Download Citation