• Photonics Research
  • Vol. 11, Issue 12, 2149 (2023)
Xiaoyu Jin1, Jie Zhao1、2、5、*, Dayong Wang1、2、6、*, John J. Healy3、4, Lu Rong1、2, Yunxin Wang1、2, and Shufeng Lin1、2
Author Affiliations
  • 1College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • 2Beijing Engineering Research Center of Precision Measurement Technology and Instruments, Beijing 100124, China
  • 3Beijing-Dublin International College, Beijing University of Technology, Beijing 100124, China
  • 4School of Electrical and Electronic Engineering, College of Engineering and Architecture, University College Dublin, Belfield, Dublin 4, Ireland
  • 5e-mail: zhaojie@bjut.edu.cn
  • 6e-mail: wdyong@bjut.edu.cn
  • show less
    DOI: 10.1364/PRJ.493902 Cite this Article Set citation alerts
    Xiaoyu Jin, Jie Zhao, Dayong Wang, John J. Healy, Lu Rong, Yunxin Wang, Shufeng Lin. Continuous-wave terahertz in-line holographic diffraction tomography with the scattering fields reconstructed by a physics-enhanced deep neural network[J]. Photonics Research, 2023, 11(12): 2149 Copy Citation Text show less
    References

    [1] Y. Zhang, C. Wang, B. Huai, S. Wang, Y. Zhang, D. Wang, L. Rong, Y. Zheng. Continuous-wave THz imaging for biomedical samples. Appl. Sci., 11, 71(2021).

    [2] A. Saha. Terahertz Solid-State Physics and Devices(2020).

    [3] P. Fosodeder, S. Hubmer, A. Ploier, R. Ramlau, S. V. Frank, C. Rankl. Phase-contrast THz-CT for non-destructive testing. Opt. Express, 29, 15711-15723(2021).

    [4] M. Zhai, A. Locquet, C. Roquelet, L. A. Ronqueti, D. S. Citrin. Thickness characterization of multi-layer coated steel by terahertz time-of-flight tomography. NDT & E Int., 116, 102358(2020).

    [5] C. D. Stoik, M. J. Bohn, J. L. Blackshire. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt. Express, 16, 17039-17051(2008).

    [6] D. Li, Z. Yang, A. Fu, T. Chen, L. Chen, M. Tang, H. Zhang, N. Mu, S. Wang, G. Liang, H. Wang. Detecting melanoma with a terahertz spectroscopy imaging technique. Spectrochim. Acta A, 234, 118229(2020).

    [7] J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, G. A. Mourou. Terahertz imaging for non-destructive evaluation of mural painting. Opt. Commun., 281, 524-532(2008).

    [8] H. Balacey, B. Recur, J. Perraud, J. B. Sleiman, J. Guillet, P. Mounaix. Advanced processing sequence for 3-D THz imaging. IEEE Trans. Terahertz Sci. Technol., 6, 191-198(2016).

    [9] S. Wang, B. Ferguson, D. Abbott, X. Zhang. T-ray imaging and tomography. J. Bio. Phys., 29, 247-256(2003).

    [10] D. Wang, X. Jin, J. Zhao, Y. Wang, L. Rong, J. J. Healy. Continuous-wave terahertz diffraction tomography for measuring three-dimensional refractive index maps. Chin. Opt. Lett., 19, 123701(2021).

    [11] B. M. Fischer, M. Hoffmann, H. Helm, R. Wilk, F. Rutz, T. Kleine-Ostmann, M. Koch, P. U. Jepsen. Terahertz time-domain spectroscopy and imaging of artificial RNA. Opt. Express, 13, 5205-5215(2005).

    [12] B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, G. Popescu. Diffraction phase microscopy: principles and applications in materials and life sciences. Adv. Opt. Photonics, 6, 57-119(2014).

    [13] M. S. Heimbeck, H. O. Everitt. Terahertz digital holographic imaging. Adv. Opt. Photonics, 12, 1-59(2020).

    [14] Q. Li, Y. Li. Continuous-wave 2.52 Terahertz Gabor inline compressive holographic tomography. Appl. Phys. B, 117, 585-596(2014).

    [15] Z. Li, Q. Yan, Y. Qin, W. Kong, G. Li, M. Zou, D. Wang, Z. You, X. Zhou. Sparsity-based continuous wave terahertz lens-free on-chip holography with sub-wavelength resolution. Opt. Express, 27, 702-713(2019).

    [16] Z. Li, R. Zou, W. Kong, X. Wang, Q. Deng, Q. Yan, Y. Qin, W. Wu, X. Zhou. Terahertz synthetic aperture in-line holography with intensity correction and sparsity autofocusing reconstruction. Photonics Res., 7, 1391-1399(2019).

    [17] X. Jin, J. Zhao, D. Wang, L. Rong, Y. Wang, J. J. Healy, S. Lin. Iterative denoising phase retrieval method for twin-image elimination in continuous-wave terahertz in-line digital holography. Opt. Lasers Eng., 152, 106986(2022).

    [18] Z. Li, Q. Yan, Y. Qin, W. Kong, M. Zou, X. Zhou. Subwavelength full-field terahertz ptychography via longitudinal shifts. APL Photonics, 7, 116102(2022).

    [19] L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, Y. Wang. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation. Opt. Express, 22, 17236-17245(2014).

    [20] L. Rong, S. Wang, D. Wang, F. Tan, Y. Zhang, J. Zhao, Y. Wang. Transport of intensity equation-based terahertz lensless full-field phase imaging. Opt. Lett., 46, 5846-5849(2021).

    [21] A. K. Gupta, N. K. Nishchal. A composite method of transport-of-intensity equation for the recovery of broad range of spatial frequencies. J. Opt., 51, 605-612(2022).

    [22] C. Zuo, J. Qian, S. Feng, W. Yin, Y. Li, P. Fan, K. Qian, Q. Chen. Deep learning in optical metrology: a review. Light Sci. Appl., 11, 39(2022).

    [23] S. Amirhossein, G. Carlo, B. A. Ahmed. Physics-informed neural networks for diffraction tomography. Adv. Photonics, 4, 066001(2022).

    [24] Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, A. Ozcan. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl., 7, 17141(2018).

    [25] A. Sinha, J. Lee, S. Li, G. Barbastathis. Lensless computational imaging through deep learning. Optica, 4, 1117-1125(2017).

    [26] H. Wang, M. Lyu, G. Situ. eHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstruction. Opt. Express, 26, 22603-22614(2018).

    [27] F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, G. Situ. Phase imaging with an untrained neural network. Light Sci. Appl., 9, 77(2020).

    [28] R. Li, G. Pedrini, Z. Huang, S. Reichelt, L. Cao. Physics-enhanced neural network for phase retrieval from two diffraction patterns. Opt. Express, 30, 32680-32692(2022).

    [29] C. Bai, T. Peng, J. Min, R. Li, Y. Zhou, B. Yao. Dual-wavelength in-line digital holography with untrained deep neural networks. Photonics Res., 9, 2501-2510(2021).

    [30] Y. Li, W. Hu, X. Zhang, Z. Xu, J. Ni, L. P. Ligthart. Adaptive terahertz image super-resolution with adjustable convolutional neural network. Opt. Express, 28, 22200-22217(2020).

    [31] T. Lei, B. Tobin, Z. Liu, S. Yang, D. Sun. A terahertz time-domain super-resolution imaging method using a local-pixel graph neural network for biological products. Anal. Chim. Acta, 1181, 338898(2021).

    [32] Y. Wang, F. Qi, J. Wang. Terahertz image super-resolution based on a complex convolutional neural network. Opt. Lett., 46, 3123-3126(2021).

    [33] E. Hack, L. Valzania, G. Gäumann, M. Shalaby, C. P. Hauri, P. Zolliker. Comparison of thermal detector arrays for off-axis THz holography and real-time THz imaging. Sensors, 16, 221(2016).

    [34] O. Ronneberger, P. Fischer, T. Brox. U-Net: convolutional networks for bio-medical image segmentation. Proceedings of Medical Image Computing and Computer-Assisted Intervention–MICCAI, 9351, 234-241(2015).

    [35] J. W. Goodman. Introduction to Fourier Optics(2005).

    [36] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization. arXiv(2014).

    [37] B. Chen, J. J. Stamnes. Validity of diffraction tomography based on the first Born and the first Rytov approximations. Appl. Opt., 37, 2996-3006(1998).

    [38] P. Müller, M. Schürmann, J. Guck. The theory of diffraction tomography. arXiv(2015).

    [39] T. Latychevskaia, H. W. Fink. Solution to the twin image problem in holography. Phys. Rev. Lett., 98, 233901(2007).

    [40] Y. Gao, L. Cao. Iterative projection meets sparsity regularization: towards practical single-shot quantitative phase imaging with in-line holography. Light Adv. Manuf., 4, 6(2023).

    [41] A. Mittal, R. Soundararajan, A. C. Ovik. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett., 20, 209-212(2013).

    [42] T. Latychevskaia, H. W. Fink. Reconstruction of purely absorbing, absorbing and phase-shifting, and strong phase-shifting objects from their single-shot in-line holograms. Appl. Opt., 54, 3925-3932(2015).

    Xiaoyu Jin, Jie Zhao, Dayong Wang, John J. Healy, Lu Rong, Yunxin Wang, Shufeng Lin. Continuous-wave terahertz in-line holographic diffraction tomography with the scattering fields reconstructed by a physics-enhanced deep neural network[J]. Photonics Research, 2023, 11(12): 2149
    Download Citation