• Journal of Inorganic Materials
  • Vol. 36, Issue 9, 999 (2021)
Ying WANG1, Wenlong ZHANG1, Yanfeng XING1、*, suqun CAO2, Xinyi DAI3, and Jingze LI4、*
Author Affiliations
  • 11. School of Mechanical and Automobile Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • 22. Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huaian 223003, China
  • 33. College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
  • 44. School of Microelectronics and Solid-state Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
  • show less
    DOI: 10.15541/jim20200576 Cite this Article
    Ying WANG, Wenlong ZHANG, Yanfeng XING, suqun CAO, Xinyi DAI, Jingze LI. Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V[J]. Journal of Inorganic Materials, 2021, 36(9): 999 Copy Citation Text show less
    References

    [1] K ZAGHIB, M SIMONEAU, M ARMAND et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. Journal of Power Sources, 81-82, 300-305(1999).

    [2] H CHOI S, T KWON, A COSKUN et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science, 357, 279-283(2017).

    [3] Y ZHONG Z, C OUYANG, Q SHI S et al. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries. ChemPhysChem, 9, 2104-2108(2008).

    [4] A STENINA I, N SOBOLEV A, S YAROSLAVTSEV et al. Influence of iron doping on structure and electrochemical properties of Li4Ti5O12. Electrochimica Acta, 219, 524-530(2016).

    [5] S BHATTI H, H ANJUM D, S ULLAH et al. Electrochemical characteristics and Li+ ion intercalation kinetics of dual-phase Li4Ti5O12/Li2TiO3 composite in the voltage range 0-3 V. The Journal of Physical Chemistry C, 120, 9553-9561(2016).

    [6] Y WANG, Y REN, Y DAI X et al. Electrochemical performance of ZnO-coated Li4Ti5O12 composite electrodes for lithium-ion batteries with the voltage ranging from 3 to 0.01 V. Royal Society Open Science, 5, 180762(2018).

    [7] S JIANG, B ZHAO, Y CHEN et al. Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect. Journal of Power Sources, 238, 356-365(2013).

    [8] S JUNG Y, S CAVANAGH A, A RILEY L et al. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Advanced Materials, 22, 2172-2176(2010).

    [9] W LI N, X YIN Y, P YANG C et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced Materials, 28, 1853-1858(2016).

    [10] Y WANG, J ZHOU A, Y DAI X et al. Solid-state synthesis of submicron-sized Li4Ti5O12/Li2TiO3 composites with rich grain boundaries for lithium ion batteries. Journal of Power Sources, 266, 114-120(2014).

    [11] X LU, L ZHAO, Q HE X et al. Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Advanced Materials, 24, 3233-3238(2012).

    [12] Q TAN G, F WU, L LI et al. Coralline glassy lithium phosphate- coated LiFePO4 cathodes with improved power capability for lithium ion batteries. Journal of Physical Chemistry C, 117, 6013-6021(2013).

    [13] W LEE S, S KIM M, H JEONG J et al. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted Sol-Gel method: improved thermal stability and high-voltage performance. Journal of Power Sources, 360, 206-214(2017).

    [14] M HIRAYAMA, K KIM, T TOUJIGAMORI et al. Epitaxial growth and electrochemical properties of Li4Ti5O12 thin-film lithium battery anodes. Dalton Transactions, 40, 2882-2887(2011).

    [15] L ZHAO, S HU Y, H LI et al. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Advanced Materials, 23, 1385-1388(2011).

    [16] S HALL D, R GAUTHIER, A ELDESOKY et al. New chemical insights into the beneficial role of Al2O3 cathode coatings in lithium-ion cells. ACS Applied Materials & Interfaces, 11, 14095-14100(2019).

    [17] H BORGHOLS W J, M WAGEMAKER, U LAFONT et al. Size effects in the Li4+xTi5O12 spinel. Journal of the American Chemical Society, 131, 17786-17792(2009).

    [18] S GANAPATHY, N WAGEMAKER M J A. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. ACS Nano, 6, 8702-8712(2012).

    [19] M WAGEMAKER, R SIMON D, M KELDER E et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12. Advanced Materials, 18, 3169-3173(2010).

    [20] S JUNG Y, P LU, S CAVANAGH A et al. Unexpected improved performance of ALD coated LiCoO2/graphite Li-ion batteries. Advanced Energy Materials, 3, 213-219(2013).

    [21] A MOGUSMILANKOVIC, A SANTIC, M KARABULUT et al. Study of electrical properties of MoO3-Fe2O3-P2O5 and SrO-Fe2O3-P2O5 glasses by impedance spectroscopy. II. Journal of Non-Crystalline Solids, 330, 128-141(2003).

    [22] D AHN, C XIAO X J E. Extended lithium titanate cycling potential window with near zero capacity loss. Electrochemistry Communications, 13, 796-799(2011).

    [23] H GE, N LI, Y LI D et al. Study on the theoretical capacity of spinel lithium titanate induced by low-potential intercalation. Journal of Physical Chemistry C, 113, 6324-6326(2009).

    [24] D LEVI M, G SALITRA, B MARKOVSKY et al. Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. Journal of The Electrochemical Society, 146, 1279-1289(1999).

    Ying WANG, Wenlong ZHANG, Yanfeng XING, suqun CAO, Xinyi DAI, Jingze LI. Performance of Amorphous Lithium Phosphate Coated Lithium Titanate Electrodes in Extended Working Range of 0.01-3.00 V[J]. Journal of Inorganic Materials, 2021, 36(9): 999
    Download Citation