• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 1, 2021360 (2022)
Chong-Ru WANG1、2、3, Li-Feng YANG1、3、4, Xun CAO5, and Yue-Ming WANG1、2、3、*
Author Affiliations
  • 1Key Laboratory of Space Active Opto-Electronics Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 2Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
  • 3University of Chinese Academy of Sciences,Beijing 100049,China
  • 4Beijing Remote Sensing Information Research Institute,Beijing,100011,China
  • 5School of Electronics Science and Engineering,Nanjing University,Nanjing 210123,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.01.007 Cite this Article
    Chong-Ru WANG, Li-Feng YANG, Xun CAO, Yue-Ming WANG. Recent progress of airborne infrared remote sensing technology in SITP[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021360 Copy Citation Text show less
    References

    [1] F A Kruse, W M Baugh, S L Perry. Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands for mineral mapping. Journal of Applied Remote Sensing, 9, 096044(2015).

    [2] Y M Wang, J X Jia, Z P He et al. Key technologies of advanced hyperspectral imaging system. Journal of Remote Sensing, 20, 850-857(2016).

    [3] Yi-kun WANG, Hong-xing QI, Gui-cheng HANG et al. Study on light-small whiskbroom scanning thermal imaging system with area-array detector. Laser & Infrared, 45, 5(2015).

    [4] J Jia, Y Wang, X Zhuang et al. High spatial resolution shortwave infrared imaging technology based on time delay and digital accumulation method. Infrared Physics & Technology, 81, 305-312(2017).

    [5] J Jia, Y Wang, J Chen et al. Status and application of advanced airborne hyperspectral imaging technology: A review. Infrared Physics & Technology, 104, 103115(2020).

    [6] Jie-lin Zhang, Jun-hu Wang, Z Mi et al. Aerial visible-thermal infrared hyperspectral feature extraction technology and its application to object identification, 17, 012184(2014).

    [7] S J Edberg, D L Evans, J E Graf et al. Studying Earth in the New Millennium: NASA Jet Propulsion Laboratory's Contributions to Earth Science and Applications Space Agencies. IEEE Geoscience and Remote Sensing Magazine, 4, 26-39(2016).

    [8] S Meerdink, D Roberts, G Hulley et al. Plant species' spectral emissivity and temperature using the hyperspectral thermal emission spectrometer (HyTES) sensor. Remote Sensing of Environment, 224, 421-435(2019).

    [9] S J Hook, W R Johnson, M J Abrams. NASA’s hyperspectral thermal emission spectrometer (HyTES). Thermal Infrared Remote Sensing, 93-115(2013).

    [10] L R Rouvière, I Sisakoun, T Skauli et al. Sysiphe, an airborne hyperspectral system from visible to thermal infrared, 1947-1949(2016).

    [11] J Jia, Y Wang, X Cheng et al. Destriping algorithms based on statistics and spatial filtering for visible-to-thermal infrared pushbroom hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 57, 4077-4091(2019).

    [12] L Hamlin, R O Green, P Mouroulis et al. Imaging spectrometer science measurements for terrestrial ecology: AVIRIS and new developments, 1-7(2011).

    [13] J W Chapman, D R Thompson, M C Helmlinger et al. Spectral and radiometric calibration of the next generation airborne visible infrared spectrometer (AVIRIS-NG). Remote Sensing, 11, 2129(2019).

    [14] R O Green, C Team. New measurements of the earth's spectroscopic diversity acquired during the aviris-ng campaign to India, 3066-3069(2017).

    [15] Jet Propulsion Laboratory . California Institute of Technology. (2021). AVIRIS next generation. http://avirisng.jpl.nasa.gov/

    [16] B Fièque, P Chorier, B Terrier. Sofradir detectors for hyperspectral applications from visible up to VLWIR, 7826, 78261I(2010).

    [17] S Blaaberg, T Løke, I Baarstad et al. A next generation VNIR-SWIR hyperspectral camera system: HySpex ODIN-1024, 9249, 92490W(2014).

    [18] Yueming Wang, Junwei Lang, Jianyu Wang. Status and Prospect of Space-Borne HyperspectralImaging Technology. Laser and Optoelectronics Progress, 50, 8(2013).

    [19] C Coudrain, S Bernhardt, M Caes et al. SIELETERS, an airborne infrared dual-band spectro-imaging system for measurement of scene spectral signatures. Optics express, 23, 16164-16176(2015).

    [20] L Yuan, Z He, Y Wang et al. Optical design and evaluation of airborne prism-grating imaging spectrometer. Optics express, 27, 17686-17700(2019).

    [21] L Yuan, Z He, G Lv et al. Optical design, laboratory test, and calibration of airborne long wave infrared imaging spectrometer. Optics express, 25, 22440-22454(2017).

    [22] D Zhang, L Yuan, S Wang et al. Wide swath and high resolution airborne hyperspectral imaging system and flight validation. Sensors, 19, 1667(2019).

    [23] D Lange, M Iyengar, L Maver et al. The Goodrich 3rd generation DB-110 system: successful flight test on the F-16 aircraft, 6546, 654607(2007).

    [24] S H Wyatt. Dual spectral band reconnaissance systems for multiple platforms, 4824, 36-46(2002).

    [25] V Petrushevsky, D Tsur. Condor TAC: EO/IR tactical aerial reconnaissance photography system, 8360, 836003(2012).

    [26] A G Lareau, A J Partynski. Dual-band framing cameras: technology and status, 4127, 148-156(2000).

    [27] K J Held, B H Robinson. TIER II plus airborne EO sensor LOS control and image geolocation, 2, 377-405(1997).

    [28] A G Lareau, S R Beran, J A Lund et al. Electro-optical imaging array with motion compensation: U.S. Patent 5, 155, 597.

    Chong-Ru WANG, Li-Feng YANG, Xun CAO, Yue-Ming WANG. Recent progress of airborne infrared remote sensing technology in SITP[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 2021360
    Download Citation