• Laser & Optoelectronics Progress
  • Vol. 59, Issue 19, 1914007 (2022)
Xue Wen1, Honghui Wang1, Dehua Fan2, Zhenglong Lei3、*, Siyuan Bi3, and Hengtong Guo3
Author Affiliations
  • 1Sinopec Jiangsu Petroleum Construction Engineering Co., Ltd., Yangzhou 225009, Jiangsu, China
  • 2Shandong Natural Gas Pipeline Co., Ltd., Jinan 250014, Shandong, China
  • 3State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001,Heilongjiang, China
  • show less
    DOI: 10.3788/LOP202259.1914007 Cite this Article Set citation alerts
    Xue Wen, Honghui Wang, Dehua Fan, Zhenglong Lei, Siyuan Bi, Hengtong Guo. Prediction of Weld Forming Size for Laser Welded Titanium Alloy T-joint Based on Regression Analysis[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1914007 Copy Citation Text show less
    References

    [1] Liu Q M, Zhang Z H, Liu S F et al. Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research, 27, 1-4(2015).

    [2] Shan Q B, Liu C, Yao J et al. Effects of scanning strategy on the microstructure, properties, and residual stress of TC4 titanium alloy prepared by laser melting deposition[J]. Laser & Optoelectronics Progress, 58, 1114002(2021).

    [3] Wang W, Shen J, Liu W J et al. Effect of scanning speed of galvanometer on surface oxide layer of TA15 titanium alloy in pulsed laser cleaning[J]. Chinese Journal of Lasers, 48, 1802004(2021).

    [4] Mei S W, Cheng Q L, Hu P P et al. Study on fiber laser welding of skinned skeletal structure titanium alloy[J]. Hot Working Technology, 44, 83-86(2015).

    [5] Liu H, Chen H. Effect of laser power on microstructure and properties of dissimilar steel’s laser welded joint[J]. Laser & Optoelectronics Progress, 58, 2314007(2021).

    [6] Chai X T, Yin Y, Wang Z P et al. Joint microstructure and properties of D36 steel using narrow gap laser welding[J]. Laser & Optoelectronics Progress, 58, 1714008(2021).

    [7] Zhao L, Han X, Zou J L et al. Research on formation process of keyhole during fiber laser deep penetration welding[J]. Laser & Optoelectronics Progress, 57, 071402(2020).

    [8] Sudnik W, Radaj D, Breitschwerdt S et al. Numerical simulation of weld pool geometry in laser beam welding[J]. Journal of Physics D: Applied Physics, 33, 662-671(2000).

    [9] Gao S Y, Wu R M, Chen W D et al. Development status of laser welding process monitor and seam quality detection[J]. World Iron & Steel, 10, 51-54, 63(2010).

    [10] Ancona A, Spagnolo V, Lugarà P M et al. Optical sensor for real-time monitoring of CO2 laser welding process[J]. Applied Optics, 40, 6019-6025(2001).

    [11] Hou W H. Research on defect recognition of weld image based on deep learning[D](2019).

    [12] Wu S P. Online monitoring of laser welding penetration status and its pattern classification[D](2006).

    [13] Qin G L, Lin S Y. Weld penetration monitoring in Nd: YAG laser deep penetration welding based on coaxial visual sensing technology[J]. Chinese Journal of Mechanical Engineering, 42, 229-233(2006).

    [14] Kong F R, Ma J J, Carlson B et al. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration[J]. Optics & Laser Technology, 44, 2186-2196(2012).

    [15] Brueggemann G, Benziger T. Process-control in laser beam welding using acoustic emission analysis[J]. Schweissen & Schneiden, 5, E73-E76(1997).

    [16] Wang C M, Yu F L, Duan A Q et al. Relationship between penetration depth and plasma optic signal during partial-penetration laser welding[J]. Transactions of the China Welding Institution, 23, 45-48, 56(2002).

    [17] Qi X B. State-of-arts of visual sensing technology to monitor laser welding process[J]. Transactions of the China Welding Institution, 29, 108-112, 118(2008).

    [18] Chen W Z, Jia L, Zhang X D et al. Coaxial vision sensing system and detection of penetration status in CO2 laser welding[J]. Applied Laser, 24, 130-134(2004).

    [19] Fang J F, Chen Y B, Li L Q et al. Coaxial monitoring with a CMOS camera for CO2 laser welding[J]. Proceedings of SPIE, 5633, 101-109(2005).

    [20] Shao J, Yan Y. Review of techniques for on-line monitoring and inspection of laser welding[J]. Journal of Physics: Conference Series, 15, 101-107(2005).

    [21] Zhao D W, Wang Y X, Liang D J et al. Performances of regression model and artificial neural network in monitoring welding quality based on power signal[J]. Journal of Materials Research and Technology, 9, 1231-1240(2020).

    Xue Wen, Honghui Wang, Dehua Fan, Zhenglong Lei, Siyuan Bi, Hengtong Guo. Prediction of Weld Forming Size for Laser Welded Titanium Alloy T-joint Based on Regression Analysis[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1914007
    Download Citation