• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 6, 2240008 (2022)
Mai Dan1, Weijie Song2, Meihui Liu1, Yaru Zhang1, and Feng Gao1、3、*
Author Affiliations
  • 1College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
  • 2Tianjin Medical University, Cancer Institute and Hospital, Tianjin 300000, P. R. China
  • 3Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, P. R. China
  • show less
    DOI: 10.1142/S1793545822400089 Cite this Article
    Mai Dan, Weijie Song, Meihui Liu, Yaru Zhang, Feng Gao. Three-dimensional quantification of protoporphyrin IX in photodynamic therapy using SFDI/DFT: A pilot experimental validation[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2240008 Copy Citation Text show less
    References

    [1] A. P. Castano, T. N. Demidova, M. R. Hamblin. Mechanisms in photodynamic therapy: Part one: Photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther., 1, 279-293(2004).

    [2] S. B. Brown, E. A. Brown, I. Walker. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol., 5, 497-508(2004).

    [3] L. M. Chong, D. J. H. Tng, L. L. Y. Tan, M. L. K. Chua, Y. Zhang. Recent advances in radiation therapy and photodynamic therapy. Appl. Phys. Rev., 8, 041322(2021).

    [4] R. R. Allison, K. Moghissi. Oncologic photodynamic therapy: Clinical strategies that modulate mechanisms of action. Photodiagn. Photodyn. Ther., 10, 331-341(2013).

    [5] B. C. Wilson, M. S. Patterson. The physics, biophysics and technology of photodynamic therapy. Phys. Med. Biol., 53, 61-109(2008).

    [6] C. M. Gardner, S. L. Jacques, A. J. Welch. Fluorescence spectroscopy of tissue: recovery of intrinsic fluorescence from measured fluorescence. Appl. Opt., 35, 1780-1792(1996).

    [7] M. M. Kim, A. A. Ghogare, A. Greer, T. C. Zhu. On the in-vivo photochemical rate parameters for PDT reactive oxygen species modeling. Phys. Med. Biol., 62, R1-R48(2017).

    [8] B. H. Li, S. S. Xie, Z. Huang, B. C. Wilson. Advances in photodynamic therapy dosimetry. Prog. Biochem. Biophys., 36, 676-683(2009).

    [9] A. J. Ruiz, E. P. M. LaRochelle, J. R. Gunn, S. M. Hull, T. Hasan, M. S. Chapman, B. W. Pogue. Smartphone fluorescence imager for quantitative dosimetry of protoporphyrin-IX-based photodynamic therapy in skin. J. Biomed. Opt., 25, 063802(2019).

    [10] M. Mousavi, L. T. Moriyama, C. Grecco, M. S. Nogueira, K. Svanberg, C. Kurachi, S. A. Engels. Photodynamic therapy dosimetry using multiexcitation multiemission wavelength: Toward real-time prediction of treatment outcome. J. Biomed. Opt., 25, 063812(2020).

    [11] T. J. Moritz, Y. B. Zhao, M. F. Hinds, J. R. Gunn, J. R. Shell, B. W. Pogue, S. J. Davis. Multispectral singlet oxygen and photosensitizer luminescence dosimeter for continuous photodynamic therapy dose assessment during treatment. J. Biomed. Opt., 25, 063810(2020).

    [12] D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, B. J. Tromberg. Quantitation and mapping of tissue optical properties using modulated imaging. J. Biomed. Opt., 14, 024012(2009).

    [13] S. D. Konecky, C. M. Owen, T. Rice, P. A. Valdés, K. Kolste, B. C. Wilson, F. Leblond, D. W. Roberts, K. D. Paulsen, B. J. Tromberg. Spatial frequency domain tomography of protoporphyrin IX fluorescence in preclinical glioma models. J. Biomed. Opt., 17, 056008(2012).

    [14] R. B. Saager, D. J. Cuccia, A. J. Durkin. Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy. J. Biomed. Opt., 15, 017012(2010).

    [15] R. B. Saager, D. J. Cuccia, S. D. Saggese, K. M. Kelly, A. J. Durkin. Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain. J. Biomed. Opt., 16, 126013(2011).

    [16] U. Sunar, D. J. Rohrbach, J. Morgan, N. Zeitouni, B. W. Henderson. Quantification of PpIX concentration in basal cell carcinoma and squamous cell carcinoma models using spatial frequency domain imaging. Biomed. Opt. Exp., 4, 531-537(2013).

    [17] D. J. Rohrbach, D. Muffoletto, J. Huihui, R. Saager, K. Keymel, A. Paquette, J. Morgan, N. Zeitouni, U. Sunar. Preoperative mapping of nonmelanoma skin cancer using spatial frequency domain and ultrasound imaging. Acad. Radiol., 21, 263-270(2014).

    [18] D. J. Rohrbach, N. C. Zeitouni, D. Muffoletto, R. Saager, B. J. Tromberg, U. Sunar. Characterization of nonmelanoma skin cancer for light therapy using spatial frequency domain imaging. Biomed. Opt. Exp., 6, 1761-1766(2015).

    [19] D. J. Wirth, M. Sibai, B. C. Wilson, D. W. Roberts, K. Paulsen. First experience with spatial frequency domain imaging and red-light excitation of protoporphyrin IX fluorescence during tumor resection. Biomed. Opt. Exp., 11, 4306-4315(2020).

    [20] C. Framme, B. Flucke, R. Birngruber. Comparison of reduced and standard light application in photodynamic therapy of the eye in two rabbit models. Graefes Arch. Clin. Exp. Ophthalmol., 244, 773-781(2006).

    [21] B. W. Henderson, T. M. Busch, J. W. Snyder. Fluence rate as a modulator of PDT mechanisms. Lasers Surg. Med., 38, 489-493(2006).

    [22] M. Dan, M. H. Liu, W. X. Bai, F. Gao. Profile-based intensity and frequency corrections for single-snapshot spatial frequency domain imaging. Opt. Exp., 29, 12833-12848(2021).

    [24] S. C. Davis, D. Hamid, W. Jia, S. D. Jiang, B. W. Pogue, K. D. Paulsen. Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization. Opt. Exp., 15, 4066-4082(2007).

    [25] A. Soubret, J. Ripoll, V. Ntziachristos. Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio. IEEE Trans. Med., 24, 1377-1386(2005).

    [26] V. A. Markel, J. C. Schotland. Inverse problem in optical diffusion tomography. II. Role of boundary conditions. J. Opt. Soc. Am. A, 19, 558-566(2002).

    [27] S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy. A finite element approach for modeling photon transport in tissue. Med. Phys., 20, 299-309(1993).

    [28] X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, B. Chance. Projection access order in algebraic reconstruction technology for diffuse optical tomography. Phys. Med. Biol., 47, 1-10(2002).

    Mai Dan, Weijie Song, Meihui Liu, Yaru Zhang, Feng Gao. Three-dimensional quantification of protoporphyrin IX in photodynamic therapy using SFDI/DFT: A pilot experimental validation[J]. Journal of Innovative Optical Health Sciences, 2022, 15(6): 2240008
    Download Citation