• Photonics Research
  • Vol. 10, Issue 3, 810 (2022)
Wenqiao Shi1, Jianqiang Gu1、5、*, Xingyuan Zhang1, Quan Xu1, Jiaguang Han1, Quanlong Yang2、6、*, Longqing Cong3、7、*, and Weili Zhang4、8、*
Author Affiliations
  • 1Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, and Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin 300072, China
  • 2Nonlinear Physics Centre, Australian National University, Canberra, ACT 2601, Australia
  • 3Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 4School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
  • 5e-mail: gjq@tju.edu.cn
  • 6e-mail: Quanlong.Yang@anu.edu.au
  • 7e-mail: conglq@sustech.edu.cn
  • 8e-mail: weili.zhang@okstate.edu
  • show less
    DOI: 10.1364/PRJ.440741 Cite this Article Set citation alerts
    Wenqiao Shi, Jianqiang Gu, Xingyuan Zhang, Quan Xu, Jiaguang Han, Quanlong Yang, Longqing Cong, Weili Zhang. Terahertz bound states in the continuum with incident angle robustness induced by a dual period metagrating[J]. Photonics Research, 2022, 10(3): 810 Copy Citation Text show less
    References

    [1] M. Tonouchi. Cutting-edge terahertz technology. Nat. Photonics, 1, 97-105(2007).

    [2] R. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, W. L. Zhang. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl. Phys. Lett., 105, 171101(2014).

    [3] B. Reinhard, O. Paul, M. Rahm. Metamaterial-based photonic devices for terahertz technology. IEEE J. Sel. Top. Quantum Electron., 19, 8500912(2013).

    [4] M. C. Schaafsma, A. Bhattacharya, J. G. Rivas. Diffraction enhanced transparency and slow THz light in periodic arrays of detuned and displaced dipoles. ACS Photon., 3, 1596-1603(2016).

    [5] K. Zhong, W. Shi, D. G. P. Xu, X. Liu, Y. Y. Wang, J. L. Mei, C. Yan, S. J. Fu, J. Q. Yao. Optically pumped terahertz sources. Sci. China Technol. Sci., 60, 1801-1818(2017).

    [6] Y. Chen, J. Gao, X. D. Yang. Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking. Nano Lett., 18, 520-527(2018).

    [7] Y. Chen, C. Zhao, Y. Z. Zhang, C. W. Qiu. Integrated molar chiral sensing based on high-Q metasurface. Nano Lett., 20, 8696-8703(2020).

    [8] Y. Chen, W. Du, Q. Zhang, O. Avalos-Ovando, J. Wu, Q. H. Xu, N. Liu, H. Okamoto, A. O. Govorov, Q. H. Xiong, C. W. Qiu. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys., 4, 113-124(2022).

    [9] C. Jansen, I. Al-Naib, N. Born, M. Koch. Terahertz metasurfaces with high Q-factors. Appl. Phys. Lett., 98, 051109(2011).

    [10] A. Ferraro, D. C. Zografopoulos, R. Caputo, R. Beccherelli. Guided-mode resonant narrowband terahertz filtering by periodic metallic stripe and patch arrays on cyclo-olefin substrates. Sci. Rep., 8, 17272(2018).

    [11] R. Singh, I. Al-Naib, M. Koch, W. L. Zhang. Sharp Fano resonances in THz metamaterials. Opt. Express, 19, 6312-6319(2011).

    [12] V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, N. I. Zheludev. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett., 99, 147401(2007).

    [13] J. V. Neumann, E. P. Wigner. Über merkwürdige diskrete Eigenwerte(1993).

    [14] D. C. Marinica, A. G. Borisov, S. V. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [15] F. Wintgen. Interfering resonances and bound states in the continuum. Phys. Rev. A, 32, 3231-3242(1985).

    [16] C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljacic. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).

    [17] M. I. Molina, A. E. Miroshnichenko, Y. S. Kivshar. Surface bound states in the continuum. Phys. Rev. Lett., 108, 070401(2012).

    [18] K. Koshelev, S. Lepeshov, M. K. Liu, A. Bogdanov, Y. Kivshar. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [19] R. Gansch, S. Kalchmair, P. Genevet, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, F. Capasso, M. Loncar, G. Strasser. Measurement of bound states in the continuum by a detector embedded in a photonic crystal. Light Sci. Appl., 5, e16147(2016).

    [20] K. B. Fan, I. V. Shadrivov, W. J. Padilla. Dynamic bound states in the continuum. Optica, 6, 169-173(2019).

    [21] S. Han, L. Q. Cong, Y. K. Srivastava, B. Qiang, M. V. Rybin, A. Kumar, R. Jain, W. X. Lim, V. C. Achanta, S. S. Prabhu, Q. J. Wang, Y. S. Kivshar, R. Singh. All-dielectric active terahertz photonics driven by bound states in the continuum. Adv. Mater., 31, 1901921(2019).

    [22] Y. Yang, C. Peng, Y. Liang, Z. B. Li, S. Noda. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett., 113, 037401(2014).

    [23] H. N. Xu, Y. C. Shi. Silicon-waveguide-integrated high-quality metagrating supporting bound state in the continuum. Laser Photon. Rev., 14, 1900430(2020).

    [24] S. Romano, M. Mangini, E. Penzo, S. Cabrini, A. C. De Luca, I. Rendina, V. Mocella, G. L. Zito. Ultrasensitive surface refractive index imaging based on quasi-bound states in the continuum. ACS Nano, 14, 15417-15427(2020).

    [25] M. F. Wu, S. T. Ha, S. Shendre, E. G. Durmusoglu, W. K. Koh, D. R. Abujetas, J. A. Sanchez-Gil, R. Paniagua-Dominguez, H. V. Demir, A. I. Kuznetsov. Room-temperature lasing in colloidal nanoplatelets via Mie-resonant bound states in the continuum. Nano Lett., 20, 6005-6011(2020).

    [26] B. Wang, W. Z. Liu, M. X. Zhao, J. J. Wang, Y. W. Zhang, A. Chen, F. Guan, X. H. Liu, L. Shi, J. Zi. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics, 14, 623-628(2020).

    [27] M. K. Liu, D. Y. Choi. Extreme Huygens’ metasurfaces based on quasi-bound states in the continuum. Nano Lett., 18, 8062-8069(2018).

    [28] M. Lawrence, D. R. Barton, J. Dixon, J. H. Song, J. van de Groep, M. L. Brongersma, J. A. Dionne. High quality factor phase gradient metasurfaces. Nat. Nanotechnol., 15, 956-961(2020).

    [29] J. Gomis-Bresco, D. Artigas, L. Torner. Anisotropy-induced photonic bound states in the continuum. Nat. Photonics, 11, 232-293(2017).

    [30] A. C. Overvig, S. Shrestha, N. F. Yu. Dimerized high contrast gratings. Nanophotonics, 7, 1157-1168(2018).

    [31] S. S. Wang, R. Magnusson. Theory and applications of guided-mode resonance filters. Appl. Opt., 32, 2606-2613(1993).

    [32] F. Wu, J. J. Wu, Z. W. Guo, H. T. Jiang, Y. Sun, Y. H. Li, J. Ren, H. Chen. Giant enhancement of the Goos-Hanchen shift assisted by quasibound states in the continuum. Phys. Rev. Appl., 12, 014028(2019).

    [33] G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky. Terahertz waveguides. J. Opt. Soc. Am. B, 17, 851-863(2000).

    [34] Y. Liang, K. Koshelev, F. C. Zhang, H. Lin, S. R. Lin, J. Y. Wu, B. H. Jia, Y. Kivshar. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett., 20, 6351-6356(2020).

    [35] V. Kravtsov, E. Khestanova, F. A. Benimetskiy, T. Ivanova, A. K. Samusev, I. S. Sinev, D. Pidgayko, A. M. Mozharov, I. S. Mukhin, M. S. Lozhkin, Y. V. Kapitonov, A. S. Brichkin, V. D. Kulakovskii, I. A. Shelykh, A. I. Tartakovskii, P. M. Walker, M. S. Skolnick, D. N. Krizhanovskii, I. V. Iorsh. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci. Appl., 9, 56(2020).

    [36] E. N. Bulgakov, A. F. Sadreev. Bloch bound states in the radiation continuum in a periodic array of dielectric rods. Phys. Rev. A, 90, 053801(2014).

    [37] Y. M. Yang, I. I. Kravchenko, D. P. Briggs, J. Valentine. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun., 5, 5753(2014).

    [38] A. N. Poddubny, M. V. Rybin, M. F. Limonov, Y. S. Kivshar. Fano interference governs wave transport in disordered systems. Nat. Commun., 3, 914(2012).

    [39] Y. F. Wang, J. M. Song, L. Dong, M. Lu. Optical bound states in slotted high-contrast gratings. J. Opt. Soc. Am. B, 33, 2472-2479(2016).

    [40] L. F. Ni, Z. X. Wang, C. Peng, Z. B. Li. Tunable optical bound states in the continuum beyond in-plane symmetry protection. Phys. Rev. B, 94, 245148(2016).

    [41] Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh, O. Takayama, R. Malureanu, A. A. Bogdanov, A. V. Lavrinenko. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photon., 4, 723-727(2017).

    [42] F. Monticone, A. Alu. Bound states within the radiation continuum in diffraction gratings and the role of leaky modes. New J. Phys., 19, 093011(2017).

    [43] D. R. Abujetas, A. Barreda, F. Moreno, A. Litman, J. M. Geffrin, J. A. Sanchez-Gil. High-Q transparency band in all-dielectric metasurfaces induced by a quasi bound state in the continuum. Laser Photon. Rev., 15, 2000263(2021).

    [44] L. L. Doskolovich, E. A. Bezus, D. A. Bykov, N. V. Golovastikov, V. A. Soifer. Resonant properties of composite structures consisting of several resonant diffraction gratings. Opt. Express, 27, 25814-25828(2019).

    [45] L. Q. Cong, R. Singh. Symmetry-protected dual bound states in the continuum in metamaterials. Adv. Opt. Mater., 7, 1900383(2019).

    [46] Z. Y. Li, Y. F. Ma, R. Huang, R. J. Singh, J. Q. Gu, Z. Tian, J. G. Han, W. L. Zhang. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt. Express, 19, 8912-8919(2011).

    [47] S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [48] W. Suh, Z. Wang, S. H. Fan. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron., 40, 1511-1518(2004).

    [49] A. H. Safavi-Naeini, T. P. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter. Electromagnetically induced transparency and slow light with optomechanics. Nature, 472, 69-73(2011).

    [50] R. R. Boye, R. K. Kostuk. Investigation of the effect of finite grating size on the performance of guided-mode resonance filters. Appl. Opt., 39, 3649-3653(2000).

    [51] Z. Y. Zhao, X. B. Zheng, W. Peng, H. W. Zhao, J. B. Zhang, Z. J. Luo, W. Z. Shi. Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators. Opt. Mater. Express, 7, 1950-1961(2017).

    Wenqiao Shi, Jianqiang Gu, Xingyuan Zhang, Quan Xu, Jiaguang Han, Quanlong Yang, Longqing Cong, Weili Zhang. Terahertz bound states in the continuum with incident angle robustness induced by a dual period metagrating[J]. Photonics Research, 2022, 10(3): 810
    Download Citation