• Photonics Research
  • Vol. 11, Issue 6, 906 (2023)
Kihong Choi1,†, Jae-Won Lee2,†, Jungyeop Shin2, Keehoon Hong1..., Joongki Park1 and Hak-Rin Kim2,3,*|Show fewer author(s)
Author Affiliations
  • 1Digital Holography Research Section, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
  • 2School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
  • 3School of Electronics Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
  • show less
    DOI: 10.1364/PRJ.476354 Cite this Article Set citation alerts
    Kihong Choi, Jae-Won Lee, Jungyeop Shin, Keehoon Hong, Joongki Park, Hak-Rin Kim, "Real-time noise-free inline self-interference incoherent digital holography with temporal geometric phase multiplexing," Photonics Res. 11, 906 (2023) Copy Citation Text show less
    References

    [1] J. Rosen, G. Brooker. Fresnel incoherent correlation holography (finch): a review of research. Adv. Opt. Technol., 1, 151-169(2012).

    [2] J.-P. Liu, T. Tahara, Y. Hayasaki, T.-C. Poon. Incoherent digital holography: a review. Appl. Sci., 8, 143(2018).

    [3] J. Rosen, S. Alford, V. Anand, J. Art, P. Bouchal, Z. Bouchal, M.-U. Erdenebat, L. Huang, A. Ishii, S. Juodkazis, N. Kim, P. Kner, T. Koujin, Y. Kozawa, D. Liang, J. Liu, C. Mann, A. Marar, A. Matsuda, T. Nobukawa, T. Nomura, R. Oi, M. Potcoava, T. Tahara, B. L. Thanh, H. Zhou. Roadmap on recent progress in FINCH technology. J. Imaging, 7, 197(2021).

    [4] J. Rosen, G. Brooker. Fluorescence incoherent color holography. Opt. Express, 15, 2244-2250(2007).

    [5] D. C. Clark, M. K. Kim. Nonscanning three-dimensional differential holographic fluorescence microscopy. J. Electron. Imaging, 24, 043014(2015).

    [6] M. K. Kim. Full color natural light holographic camera. Opt. Express, 21, 9636-9642(2013).

    [7] J. Hong, M. K. Kim. Single-shot self-interference incoherent digital holography using off-axis configuration. Opt. Lett., 38, 5196-5199(2013).

    [8] X. Quan, O. Matoba, Y. Awatsuji. Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings. Opt. Lett., 42, 383-386(2017).

    [9] C. M. Nguyen, D. Muhammad, H.-S. Kwon. Spatially incoherent common-path off-axis color digital holography. Appl. Opt., 57, 1504-1509(2018).

    [10] O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip, 10, 1417-1428(2010).

    [11] V. Anand, T. Katkus, D. P. Linklater, E. P. Ivanova, S. Juodkazis. Lensless three-dimensional quantitative phase imaging using phase retrieval algorithm. J. Imaging, 6, 99(2020).

    [12] Y. Rivenson, Y. Wu, A. Ozcan. Deep learning in holography and coherent imaging. Light Sci. Appl., 8, 85(2019).

    [13] T. Zeng, Y. Zhu, E. Y. Lam. Deep learning for digital holography: a review. Opt. Express, 29, 40572-40593(2021).

    [14] Y.-G. Ju, H.-G. Choo, J.-H. Park. Learning-based complex field recovery from digital hologram with various depth objects. Opt. Express, 30, 26149-26168(2022).

    [15] G. Pedrini, H. Li, A. Faridian, W. Osten. Digital holography of self-luminous objects by using a Mach–Zehnder setup. Opt. Lett., 37, 713-715(2012).

    [16] J. Rosen, G. Brooker. Digital spatially incoherent Fresnel holography. Opt. Lett., 32, 912-914(2007).

    [17] N. Siegel, V. Lupashin, B. Storrie, G. Brooker. High-magnification super-resolution finch microscopy using birefringent crystal lens interferometers. Nat. Photonics, 10, 802-808(2016).

    [18] M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London A, 392, 45-57(1984).

    [19] S. Pancharatnam. Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. A, 44, 247-262(1956).

    [20] P. Hariharan, P. Ciddor. An achromatic phase-shifter operating on the geometric phase. Opt. Commun., 110, 13-17(1994).

    [21] K. Choi, J. Yim, S.-W. Min. Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens. Opt. Express, 26, 16212-16225(2018).

    [22] K. Choi, K. Hong, J. Park, S.-W. Min. Michelson-interferometric-configuration-based incoherent digital holography with a geometric phase shifter. Appl. Opt., 59, 1948-1953(2020).

    [23] V. Anand, T. Katkus, S. Lundgaard, D. P. Linklater, E. P. Ivanova, S. H. Ng, S. Juodkazis. Fresnel incoherent correlation holography with single camera shot. Opto-Electron. Adv., 3, 200004(2020).

    [24] T. Nobukawa, T. Muroi, Y. Katano, N. Kinoshita, N. Ishii. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings. Opt. Lett., 43, 1698-1701(2018).

    [25] Y. Zhang, M. T. Wu, M. Y. Tang, F. Y. Ma, E. J. Liang, Y. L. Du, Z. Y. Duan, Q. X. Gong. Fresnel incoherent correlation hologram recording in real-time. Optik, 241, 166938(2021).

    [26] T. Nobukawa, Y. Katano, M. Goto, T. Muroi, K. Hagiwara, N. Ishii. Grating-based in-line geometric-phase-shifting incoherent digital holographic system toward 3D videography. Opt. Express, 30, 27825-27840(2022).

    [27] Y. Awatsuji, M. Sasada, T. Kubota. Parallel quasi-phase-shifting digital holography. Appl. Phys. Lett., 85, 1069-1071(2004).

    [28] T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, O. Matoba. High-speed phase imaging by parallel phase-shifting digital holography. Opt. Lett., 36, 4131-4133(2011).

    [29] T. Tahara, T. Kanno, Y. Arai, T. Ozawa. Single-shot phase-shifting incoherent digital holography. J. Opt., 19, 065705(2017).

    [30] N. Siegel, G. Brooker. Single shot holographic super-resolution microscopy. Opt. Express, 29, 15953-15968(2021).

    [31] K. Choi, K.-I. Joo, T.-H. Lee, H.-R. Kim, J. Yim, H. Do, S.-W. Min. Compact self-interference incoherent digital holographic camera system with real-time operation. Opt. Express, 27, 4818-4833(2019).

    [32] D. Liang, Q.-J. Zhang, J. Wang, J. Liu. Single-shot Fresnel incoherent digital holography based on geometric phase lens. J. Mod. Opt., 67, 92-98(2019).

    [33] T. Tahara, R. Oi. Palm-sized single-shot phase-shifting incoherent digital holography system. OSA Contin., 4, 2372-2380(2021).

    [34] Y. Maruyama, T. Terada, T. Yamazaki, Y. Uesaka, M. Nakamura, Y. Matoba, K. Komori, Y. Ohba, S. Arakawa, Y. Hirasawa, Y. Kondo, J. Murayama, K. Akiyama, Y. Oike, S. Sato, T. Ezaki. 3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels. IEEE Trans. Electron Devices, 65, 2544-2551(2018).

    [35] J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, M. J. Escuti. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica, 2, 958-964(2015).

    [36] L. D. Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, B. R. Kimball. Digital polarization holography advancing geometrical phase optics. Opt. Express, 24, 18297-18306(2016).

    [37] Y. Takaki, H. Kawai, H. Ohzu. Hybrid holographic microscopy free of conjugate and zero-order images. Appl. Opt., 38, 4990-4996(1999).

    [38] T.-C. Poon, J.-P. Liu. Introduction to Modern Digital Holography: With MATLAB(2014).

    [39] S. Kumar. Liquid Crystals: Experimental Study of Physical Properties and Phase Transitions(2000).

    [40] J. E. Bigelow, R. A. Kashnow. Poincaré sphere analysis of liquid crystal optics. Appl. Opt., 16, 2090-2096(1977).

    [41] G. R. Fowles. Introduction to Modern Optics(1989).

    [42] D.-K. Yang, S.-T. Wu. Fundamentals of Liquid Crystal Devices(2014).

    [43] H.-R. Kim, Y. W. Lee, S.-J. Kim, D.-W. Kim, C.-J. Yu, B. Lee, S.-D. Lee. A rotatable waveplate using a vertically aligned deformed-helix ferroelectric liquid crystal. Ferroelectrics, 312, 57-62(2004).

    [44] C. Oh, M. J. Escuti. Achromatic diffraction from polarization gratings with high efficiency. Opt. Lett., 33, 2287-2289(2008).

    [45] N. V. Tabiryan, S. V. Serak, S. R. Nersisyan, D. E. Roberts, B. Y. Zeldovich, D. M. Steeves, B. R. Kimball. Broadband waveplate lenses. Opt. Express, 24, 7091-7102(2016).

    [46] M. D. Lavrentovich, T. A. Sergan, J. R. Kelly. Switchable broadband achromatic half-wave plate with nematic liquid crystals. Opt. Lett., 29, 1411-1413(2004).

    [47] J. L. Vilas, L. M. Sanchez-Brea, E. Bernabeu. Optimal achromatic wave retarders using two birefringent wave plates. Appl. Opt., 52, 1892-1896(2013).

    [48] L. Li, M. J. Escuti. Super achromatic wide-angle quarter-wave plates using multi-twist retarders. Opt. Express, 29, 7464-7478(2021).

    Kihong Choi, Jae-Won Lee, Jungyeop Shin, Keehoon Hong, Joongki Park, Hak-Rin Kim, "Real-time noise-free inline self-interference incoherent digital holography with temporal geometric phase multiplexing," Photonics Res. 11, 906 (2023)
    Download Citation