• Journal of the European Optical Society-Rapid Publications
  • Vol. 19, Issue 2, 2023037 (2023)
Léna Waszczuk1、2、*, Jonas Ogien2, Frédéric Pain1, and Arnaud Dubois1、2
Author Affiliations
  • 1Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau 91127, France
  • 2DAMAE Medical, Paris 75013, France
  • show less
    DOI: 10.1051/jeos/2023037 Cite this Article
    Léna Waszczuk, Jonas Ogien, Frédéric Pain, Arnaud Dubois. Determination of scattering coefficient and scattering anisotropy factor of tissue-mimicking phantoms using line-field confocal optical coherence tomography (LC-OCT)[J]. Journal of the European Optical Society-Rapid Publications, 2023, 19(2): 2023037 Copy Citation Text show less
    References

    [1] A. Dubois, O. Levecq, H. Azimani, A. Davis, J. Ogien, D. Siret, A. Barut. Line-field confocal time domain optical coherence tomography with dynamic focusing. Opt. Exp., 26, 33534(2018).

    [2] A. Dubois, O. Levecq, H. Azimani, D. Siret, A. Barut, M. Suppa, V. del Marmol, J. Malvehy, E. Cinotti, P. Rubegni, J.-L. Perrot. Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors. J. Biomed. Opt., 23, 1(2018).

    [3] J. Ogien, A. Daures, M. Cazalas, J.-L. Perrot, A. Dubois. Line-field confocal optical coherence tomoraphy for three-dimensional skin imaging. Front. Optoelectron., 13, 381-392(2020).

    [4] J. Ogien, O. Levecq, H. Azimani, A. Dubois. Dual-mode line-field confocal optical coherence tomography for ultrahigh-resolution vertical and horizontal section imaging of human skin in vivo. Biomed. Opt. Exp., 11, 1327(2020).

    [5] J. Monnier, L. Tognetti, M. Miyamoto, M. Suppa, E. Cinotti, M. Fontaine, J. Perez, C. Orte Cano, O. Yélamos, S. Puig, A. Dubois, P. Rubegni, V. Marmol, J. Malvehy, J. Perrot. In vivo characterization of healthy human skin with a novel, non-invasive imaging technique: line-field confocal optical coherence tomography. J. Eur. Acad. Dermatol. Venereol., 34, 2914-2921(2020).

    [6] J. Chauvel-Picard, V. Bérot, L. Tognetti, C. Orte Cano, M. Fontaine, C. Lenoir, J. Pérez-Anker, S. Puig, A. Dubois, S. Forestier, J. Monnier, R. Jdid, G. Cazorla, M. Pedrazzani, A. Sanchez, S. Fischman, P. Rubegni, V. del Marmol, J. Malvehy, E. Cinotti, J.L. Perrot, M. Suppa. Line-field confocal optical coherence tomography as a tool for three-dimensional in vivo quantification of healthy epidermis: a pilot study. J. Biophotonics, 15, e202100236(2022).

    [7] G. Dejonckheere, M. Suppa, V. Marmol, T. Meyer, E. Stockfleth. The actinic dysplasia syndrome – diagnostic approaches defining a new concept in field carcinogenesis with multiple cSCC. J. Eur. Acad. Dermatol. Venereol., 33, 16-20(2019).

    [8] M. Suppa, M. Fontaine, G. Dejonckheere, E. Cinotti, O. Yélamos, G. Diet, L. Tognetti, M. Miyamoto, C. Orte Cano, J. Perez-Anker, V. Panagiotou, A. Trepant, J. Monnier, V. Berot, S. Puig, P. Rubegni, J. Malvehy, J. Perrot, V. Marmol. Line-field confocal optical coherence tomography of basal cell carcinoma: a descriptive study. J. Eur. Acad. Dermatol. Venereol., 35, 1099-1110(2021).

    [9] C. Ruini, S. Schuh, E. Sattler, J. Welzel. Line-field confocal optical coherence tomography—practical applications in dermatology and comparison with established imaging methods. Skin Res. Technol., 27, 340-352(2021).

    [10] E. Cinotti, L. Tognetti, A. Cartocci, A. Lamberti, S. Gherbassi, C. Orte Cano, C. Lenoir, G. Dejonckheere, G. Diet, M. Fontaine, M. Miyamoto, J. Perez-Anker, V. Solmi, J. Malvehy, V. Marmol, J.L. Perrot, P. Rubegni, M. Suppa. Line-field confocal optical coherence tomography for actinic keratosis and squamous cell carcinoma: a descriptive study. Clin. Exp. Dermatol., 46, 1530-1541(2021).

    [11] L.M.C. Oliveira, V.V. Tuchin. The optical clearing method. SpringerBriefs in Physics(2019).

    [12] S. Chang, A.K. Bowden. Review of methods and applications of attenuation coefficient measurements with optical coherence tomography. J. Biomed. Opt., 24, 090901(2019).

    [13] S. Liu. Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images. J. Biomed. Opt., 22, 096004(2017).

    [14] C. Kut, K.L. Chaichana, J. Xi, S.M. Raza, X. Ye, E.R. McVeigh, F.J. Rodriguez, A. Quiñones-Hinojosa, X. Li. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci. Transl. Med., 7, 292ra100(2015).

    [15] K.A. Vermeer, J. van der Schoot, H.G. Lemij, J.F. de Boer. Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data. Manns F., Söderberg P.G., Ho A. (eds), Ophthalmic Technologies XXII, 8209, 79-84(2012).

    [16] M. Bus, D. de Bruin, D. Faber, G. Kamphuis, P. Zondervan, M. Laguna-Pes, T. van Leeuwen, T.M. de Reijke, J. de la Rosette. Optical coherence tomography as a tool for in vivo staging and grading of upper urinary tract urothelial carcinoma: a study of diagnostic accuracy. J. Urol., 196, 1749-1755(2016).

    [17] M. Boone, M. Suppa, M. Miyamoto, A. Marneffe, G. Jemec, V. Del Marmol. In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography. Biomed. Opt. Exp., 7, 2269(2016).

    [18] P. Gong, M. Almasian, G. van Soest, D.M. de Bruin, T.G. van Leeuwen, D.D. Sampson, D.J. Faber. Parametric imaging of attenuation by optical coherence tomography: review of models, methods, and clinical translation. J. Biomed. Opt., 25, 1(2020).

    [19] K.A. Vermeer, J. Mo, J.J.A. Weda, H.G. Lemij, J.F. de Boer. Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography. Biomed. Opt. Exp., 5, 322-337(2014).

    [20] K. Gupta, M.R. Shenoy. Method to determine the anisotropy parameter g of a turbid medium. Appl. Opt., 57, 7559(2018).

    [21] L. Thrane, H.T. Yura, P.E. Andersen. Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle. J. Opt. Soc. Am. A, 17, 484-490(2000).

    [22] Z. Turani, E. Fatemizadeh, T. Blumetti, S. Daveluy, A.F. Moraes, W. Chen, D. Mehregan, P.E. Andersen, M. Nasiriavanaki. Optical radiomic signatures derived from optical coherence tomography images improve identification of melanoma. Cancer Res., 79, 2021-2030(2019).

    [23] L. Thrane, M.H. Frosz, T.M. Jørgensen, A. Tycho, H.T. Yura, P.E. Andersen. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures. Opt. Lett., 29, 1641-1643(2004).

    [24] S.L. Jacques. Confocal laser scanning microscopy using scattering as the contrast mechanism(2013).

    [25] R. Samatham, S.L. Jacques. Determine scattering coefficient and anisotropy of scattering of tissue phantoms using reflectance-mode confocal microscopy. Wax A., Backman V. (eds), Biomedical Applications of Light Scattering III, 7187, 152-159(2009).

    [26] N. Choudhury, S.L. Jacques. Extracting scattering coefficient and anisotropy factor of tissue using optical coherence tomography. Jansen E.D., Thomas R.J. (eds), Optical Interactions with Tissue and Cells XXIII, 8221, 144-148(2012).

    [27] D. Abi-Haidar, T. Olivier. Confocal reflectance and two-photon microscopy studies of a songbird skull for preparation of transcranial imaging. J. Biomed. Opt., 14, 034038(2009).

    [28] S.L. Jacques, R. Samatham, N. Choudhury, Y. Fu, D. Levitz. Measuring tissue optical properties in vivo using reflectance-mode confocal microscopy and OCT. Biomedical Applications of Light Scattering II, 6864, 57-64(2008).

    [29] S.L. Jacques. Optical properties of biological tissues: a review. Phys. Med. Biol., 58, R37-R61(2013).

    [30] V.V. Tuchin. Light scattering study of tissues. Phys.-Uspekhi, 40, 495-515(1997).

    [31] T. Kono, J. Yamada. In vivo measurement of optical properties of human skin for 450–800 nm and 950–1600 nm wavelengths. Int. J. Thermophys., 40, 1-14(2019).

    [33] F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe. Process and material properties of polydimethyl siloxane (PDMS) for optical MEMS. Sens. Actuators A Phys., 151, 95-99(2009).

    [34] I. Bodurov, I. Vlaeva, A. Viraneva, T. Yovcheva, S. Sainov. Modified design of a laser refractometer. Nanosci. Nanotechnol., 16, 31-33(2016).

    [35] G. Ghosh. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun., 163, 95-102(1999).

    [36] S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P.T. Probst, J. Joseph, T.A. König. Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating. ACS Appl. Mater. Interf., 11, 13752-13760(2019).

    [37] T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, A. Tünnermann. Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range. Adv. Opt. Mater., 4, 1780-1786(2016).

    [38] J.F. Beek, P. Blokland, P. Posthumus, M. Aalders, J.W. Pickering, H.J.C.M. Sterenborg, M.J.C. van Gemert. In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm. Phys. Med. Biol., 42, 2255-2261(1997).

    [39] A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys., 38, 2543-2555(2005).

    [40] A.M. Ionescu, J.C. Cardona, I. Garzón, A.C. Oliveira, R. Ghinea, M. Alaminos, M.M. Pérez. Integrating-sphere measurements for determining optical properties of tissue-engineered oral mucosa. J. Eur. Opt. Soc. Rapid Publ., 10, 15012(2015).

    [41] A. ul Rehman, I. Ahmad, S.A. Qureshi. Biomedical applications of integrating sphere: a review. Photodiagnosis Photodyn. Ther., 31, 101712(2020).

    [42] J.W. Pickering, S.A. Prahl, N. van Wieringen, J.F. Beek, H.J.C.M. Sterenborg, M.J.C. van Gemert. Double-integrating-sphere system for measuring the optical properties of tissue. Appl. Opt., 32, 399-410(1993).

    [43] S. Prahl. Optical property measurements using the inverse adding doubling program. Technical Report(2011).

    [44] R. Carminati, J.C. Schotland. Principles of scattering and transport of light(2021).

    [45] L.V. Wang, H.I. Wang. Biomedical optics: principles and imaging(2007).

    [46] D.J. Faber, F.J. van der Meer, M.C.G. Aalders, T.G. van Leeuwen. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography. Opt. Exp., 12, 4353(2004).

    [47] I.V. Turchin, E.A. Sergeeva, L.S. Dolin, V.A. Kamensky, N.M. Shakhova, R.R. Richards-Kortum. Novel algorithm of processing optical coherence tomography images for differentiation of biological tissue pathologies. J. Biomed. Opt., 10, 064024(2005).

    [48] B. Ghafaryasl, K. Vermeer, J. Kalkman, T. Callewaert, J. de Boer, L.V. Vliet. Attenuation coefficient estimation in fourier-domain oct of multi-layered phantoms. Biomed. Opt. Exp., 12, 2744-2758(2021).

    [49] B.C. Wilson. Measurement of tissue optical properties: methods and theories(1995).

    Léna Waszczuk, Jonas Ogien, Frédéric Pain, Arnaud Dubois. Determination of scattering coefficient and scattering anisotropy factor of tissue-mimicking phantoms using line-field confocal optical coherence tomography (LC-OCT)[J]. Journal of the European Optical Society-Rapid Publications, 2023, 19(2): 2023037
    Download Citation