• Acta Photonica Sinica
  • Vol. 51, Issue 7, 0751403 (2022)
Wenhui FAN*, Hui YAN, Xiaoqiang JIANG, Longchao CHEN, Zhuanping ZHENG, Jia LIU, Hui LI, Ling DING, and Chao SONG
Author Affiliations
  • State Key Laboratory of Transient Optics and Photonics,Xi'an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi'an 710119,China
  • show less
    DOI: 10.3788/gzxb20225107.0751403 Cite this Article
    Wenhui FAN, Hui YAN, Xiaoqiang JIANG, Longchao CHEN, Zhuanping ZHENG, Jia LIU, Hui LI, Ling DING, Chao SONG. Ultrafast Terahertz Characteristic Spectroscopy Based on Femtosecond Laser and Its Application(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751403 Copy Citation Text show less
    References

    [1] T HARTER, S UMMTHHALA, M BLAICHER et al. Wireless THz link with optoelectronic transmitter and receiver. Optica, 6, 1063-1070(2019).

    [2] M TONOUCHI. Cutting-edge terahertz technology. Nature Photonics, 1, 97-105(2007).

    [3] W XU, L XIE, Y YING. Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale, 9, 13864-13878(2017).

    [4] D GRAHAM-ROWE. Terahertz takes to the stage. Nature Photonics, 1, 75-77(2007).

    [5] E MAHIEU, M P CHIPPERFIELD, J NOTHOLT et al. Recent northern hemisphere stratospheric HCl increase due to atmospheric circulation changes. Nature, 515, 104-107(2014).

    [6] H GUERBOUKHA, K NALLAPPAN, M SKOROBOGATIY. Exploiting k-space/frequency duality toward real-time terahertz imaging. Optica, 5, 109-116(2018).

    [7] M PAN, Q CASSAR, F FAUQUET et al. Guided terahertz pulse reflectometry with double photoconductive antenna. Applied Optics, 59, 1641-1647(2020).

    [8] N T YARDIMCI, M JARRAHI. Nanostructure-enhanced photoconductive terahertz emission and detection. Small, 14, 1802437(2018).

    [9] N M BURFORD, M O EI-SHENAWEE. Review of terahertz photoconductive antenna technology. Optical Engineering, 56, 010901(2017).

    [10] D H AUSTON. Picosecond optoelectronic switching and gating in silicon. Applied Physics Letters, 26, 101-103(1975).

    [11] D GRISCHKOWSKY, S KEIDING, M VAN-EXTER. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B, 7, 2006-2015(1990).

    [12] J B BAXTER, G W GUGLIETTA. Terahertz spectroscopy. Analytical Chemistry, 83, 4342-4368(2011).

    [13] P A BANKS, L BURGESSA, M T RUGGIERO. The necessity of periodic boundary conditions for the accurate calculation of crystalline terahertz spectra. Physical Chemistry Chemical Physics, 23, 20038-20051(2021).

    [14] Y OZAKI, K B BEĆ, Y MORISAWA et al. Advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Chemical Society Reviews, 50, 10917-10954(2021).

    [15] M WALTHER, P PLOCHOCKA, B FISCHER et al. Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy. Biopolymers, 67, 310-313(2002).

    [16] Z J ZHU, C CHENG, C CHANG et al. Characteristic fingerprint spectrum of neurotransmitter norepinephrine with broadband terahertz time-domain spectroscopy. Analyst, 144, 2504-2510(2019).

    [17] S PERTICAROLI, D RUSSO, M PAOLANTONI et al. Painting biological low-frequency vibrational modes from small peptides to proteins. Physical Chemistry Chemical Physics, 17, 11423-11431(2015).

    [18] M GONZÁLEZ-JIMÉNEZ, G RAMAKRISHNA, T HARWOOD et al. Observation of coherent delocalized phonon-like modes in DNA under physiological conditions. Nature Communications, 7, 11799(2016).

    [19] M GONZÁLEZ-JIMÉNEZ, G RAMAKRISHNAN, N V TUKACHEV et al. Low-frequency vibrational modes in G-quadruplexes reveal the mechanical properties of nucleic acids. Physical Chemistry Chemical Physics, 23, 13250-13260(2021).

    [20] O ESENTURK, A EVANS, E J HEILWEIL. Terahertz spectroscopy of dicyano-benzenes: Anomalous absorption intensities and spectral calculations. Chemical Physics Letters, 442, 71-77(2007).

    [21] M WALTHER, B FISCHER, M SCHALL et al. Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy. Chemical Physics Letters, 332, 389-395(2000).

    [22] Z F WANG, Y PENG, C J SHI et al. Qualitative and quntitative recognition of chiral drugs based on terahertz spectroscopy. Analyst, 146, 3888-3898(2021).

    [23] T L MOTLEY, T M KORTER. Terahertz spectroscopy and molecular modeling of 2-pyridone clusters. Chemical Physics Letters, 464, 171-176(2008).

    [24] H YAN, W H FAN, X CHEN et al. Component spectra extraction and quantitative analysis for preservative mixtures by combining Terahertz spectroscopy and machine learning. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 271, 120908(2022).

    [25] S H YANG, M JARRAHI. Navigating THz spectrum via photomixing. Optics and Photonics News, 31, 38-43(2020).

    [26] Z GU, Y CHEN, H LI et al. Research progress of terahertz radiation sources. Infrared Technology, 33, 252-261(2011).

    [27] A DOBROIU, M YAMASHITA, Y N OHSHIMA et al. Terahertz imaging system based on a backward-wave oscillator. Applied Optics, 43, 5637-5646(2004).

    [28] L ESAKI. New phenomenon in narrow Ge p-n junctions. Physical Review Letters, 109, 603-606(1985).

    [29] W LI, J YAO. Investigation of photonically assisted microwave frequency multiplication based on external modulation. IEEE Transactions on Microwave Theory and Techniques, 58, 3259-3268(2010).

    [30] M J W RODWELL, M KAMEGAWA, R Y YU et al. GaAs nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling. IEEE Transactions on Microwave Theory and Techniques, 39, 1194-1204(1991).

    [31] J M MADEY. Stimulated emission of bremsstrahlung in a periodic magnetic field. Journal of Applied Physics, 42, 1906-1913(1971).

    [32] K L YEH, M HOFFMANN, J HEBLING et al. Generation of 10 μJ ultrashort terahertz pulses by optical rectification. Applied Physics Letters, 90, 171121(2007).

    [33] X XIE, J DAI, X C ZHANG. Coherent control of THz wave generation in ambient air. Physical Review Letters, 96, 075005(2006).

    [34] K KAWASE, J I SHIKATA, K IMAI et al. Transform-limited, narrow-linewidth, terahertz-wave parametric generator. Applied Physics Letters, 78, 2819-2821(2001).

    [35] B SUN, J YAO. Generation of terahertz wave based on optical methods. Chinese Journal of Lasers, 33, 1349(2006).

    [36] C A CURWEN, J L RENO, B S WILLIAMS. Terahertz quantum cascade VECSEL with watt-level output power. Applied Physics Letters, 113, 4(2018).

    [37] C LIU, S ZHANG, S WANG et al. Active spintronic-metasurface terahertz emitters with tunable chirality. Advanced Photonics, 3, 056002(2021).

    [38] R SUN, S YANG, X YANG et al. Large tunable spin-to-charge conversion induced by hybrid rashba and dirac surface states in topological insulator heterostructures. Nano Letter, 19, 4420-4426(2019).

    [39] L L HALE, H JUNG, S D GENNARO et al. Terahertz pulse generation from GaAs metasurfaces. ACS Photonics, 9, 1136-1142(2022).

    [40] R SAFIAN, G GHAZI,, N MOHAMMADIAN. Review of photomixing continuous-wave terahertz systems and current application trends in terahertz domain. Optical Engineering, 58, 110901(2019).

    [41] R A LEWIS. A review of terahertz detectors. Journal of Physics D: Applied Physics, 52, 433001(2019).

    [42] JEPSEN1P U , COOKE D G , KOCH M . Terahertz spectroscopy and imaging-Modern techniques and applications. Laser Photonics Review, 5, 124-166(2011).

    [43] L C CHEN, W H FAN. Study on finger capacitance of terahertz photomixer in low-temperature-grown GaAs using Finite Element Method. Chinese Physics B, 21, 104101(2012).

    [44] J T DARROW, X C ZHANG, D H IPPEN. Saturation properties of large-aperture photoconducting antennas. IEEE Journal of Quantum Electronics, 28, 1607-1616(1992).

    [45] S LEPESHOV, A GORODETSKY, A KRASNOK et al. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Review, 11, 1770001(2017).

    [46] R B KOHIHAAS, S BREUER, S NELLEN, et al. Photoconductive terahertz detectors with 105 dB peak dynamic range made of rhodium doped InGaAs. Applied Physics Letters, 114, 221103(2019).

    [47] L C CHEN, W H FAN. Numerical simulation of terahertz generation and detection based on ultrafast photoconductive antennas, 8195, 81950K(2011).

    [48] Y S LEE. Principles of Terahertz Science and Technology(2009).

    [49] C W BERRY, N WANG, M R HASHEMI et al. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nature Communications, 4, 1622(2013).

    [50] M R STONE, M NAFTALY, R E MILES et al. Electrical and radiation characteristics of semilarge photoconductive terahertz emitters. IEEE Transactions on Microwave Theory and Techniques, 52, 2420-2429(2004).

    [51] A C WARREN, N KATZENELLENBOGEN, D GRISCHKOWSKY et al. Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers. Applied Physics Letters, 58, 1512-1514(1991).

    [52] T A LIU, M TANI, M NAKAJIMA et al. Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs. Applied Physics Letters, 83, 1322-1324(2003).

    [53] M SUZUKI, M TONOUCHI. Fe-implanted InGaAs terahertz emitters for 1.56 µm wavelength excitation. Applied Physics Letters, 86, 1-3(2005).

    [54] M TANI, K LEE, X C ZHANG. Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 μm probe. Applied Physics Letters, 77, 1396-1399(2000).

    [55] B SARTORIUS, H ROEHLE, H KÜNZEL et al. All-fiber terahertz time-domain spectrometer operating at 1.5 micron telecon wavelengths. Optics Express, 16, 9565-9570(2008).

    [56] C D WOOD, O HATEM, J E CUNNINGHAM et al. Terahertz emission from metal-organic chemical vapor deposition grown Fe:InGaAs using 830 nm to 1.55 μm excitation. Applied Physics Letters, 96, 1-4(2010).

    [57] J SIGMUND, C SYDLO, H L HARTNAGEL et al. Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas. Applied Physics Letters, 87, 1-3(2005).

    [58] P GU, M TANI, S KONO et al. Study of terahertz radiation from InAs and InSb. Journal of Applied Physics, 91, 5533-5537(2002).

    [59] R ASCÁZUBI, C SHNEIDER, I WILKE et al. Enhanced terahertz emission from impurity compensated GaSb. Physical Review B, 72, 1-5(2005).

    [60] R ASCAZUBI, I WILKE, K J KIM et al. Terahertz emission from Ga1-xInxSb. Physical Review B, 74, 75323(2006).

    [61] B SALEM, D MORRIS, A AIMEZ et al. Improved characteristics of a terahertz set-up built with an emitter and a detetor made on proton-bombarded GaAs photoconductive materials. Semiconductor Science And Technology, 21, 283-286(2006).

    [62] T A LIU, M TANI, C L PAN. THz radiation emission properties of multienergy arsenic-ion-implanted GaAs and semi-insulating GaAs based photoconductive antennas. Journal of Applied Physics, 93, 2996-3001(2003).

    [63] M TANI, K SAKAI, H ABE et al. Spectroscopic characterization of low-temperature grown GaAs epitaxial films. Japanese Journal of Applied Physics, 33, 4807-4811(1994).

    [64] A M BURYAKOVA, M S IVANOV, S A NOMOEV et al. An advanced approach to control the electro-optical properties of LT-GaAs based terahertz photoconductive antenna. Materials Research Bulletin, 122, 110688(2019).

    [65] O HATEM, J CUNNINGHAM, E H LINFIELD et al. Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs. Applied Physics Letters, 98, 1-3(2011).

    [66] D J J FANDIO, B ILAHI, M DION et al. Ultrafast photocarrier dynamics in Fe-implanted InGaAs polycrystalline photoconductive materials. Journal of Physics: Condensed Matter, 33, 385701(2021).

    [67] P K LU, D TURAN, J MONA et al. High-power terahertz pulse generation from bias-free nanoantennas on graded composition InGaAs structures. Optical Express, 2, 1584-1598(2022).

    [68] R J B DIETZ, B GLOBISCH, H ROEHLE et al. Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors: 6 THz bandwidth and 90dB dynamic range. Optics Letters, 22, 615-623(2014).

    [69] S PREU, M MITTENDORFF, H LU et al. 1550 nm ErAs:In(Al)GaAs large area photoconductive emitters. Applied Physics Letters, 101, 1-3(2012).

    [70] D S KIM, S CITRIND. Coulomb and radiation screening in photoconductive terahertz sources. Applied Physics Letters, 88, 86-89(2006).

    [71] E BUDIARTO, J MARGOLIES, S JEONG et al. High-intensity terahertz pulses at 1-kHz repetition rate. IEEE Journal of Quantum Electronics, 32, 1839-1846(1996).

    [72] Z YAN, W SHI. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, 70, 248704(2021).

    [73] C W BERRY, M R HASHEMI, M JARRAHI. Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas. Applied Physics Letters, 104, 081122(2014).

    [74] W SHI, Z WANG, C LI et al. New antenna for detecting polarization states of terahertz. Frontiers in Physics, 10, 850770(2022).

    [75] A DREYHAUPT, S WINNERL, T DEKORSY et al. High-intensity terahertz radiation from a microstructured large-area photoconductor. Applied Physics Letters, 86, 1-3(2005).

    [76] G ACUNA, F BUERSGENS, C LANG et al. Interdigitated terahertz emitters. Electronics Letters, 44, 229-231(2008).

    [77] X ROPAGNOL, E LSGANDAROV, X CHAI et al. Generation of intense sub-cycle terahertz pulses with variable elliptical polarization. Applied Physics Letters, 120, 171106(2022).

    [78] W LIU, Z ZHANG, Q SU et al. Interdigitated photoconductive antenna-based two-color femtosecond laser filamentation THz time-domain spectral detection. Optics Express, 30, 18562-18570(2022).

    [79] E N F BOBY, J PRAJAPATI, V RATHINASAMY et al. Parametric investigation of interdigitated photoconductive antenna for efficient terahertz applications. Arabian Journal for Science and Engineering, 47, 3597-3609(2022).

    [80] P C UPADHYA, W H FAN, A BURNETT et al. Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna. Optics Letters, 32, 2297-2299(2007).

    [81] J A DIONNE, L A SWEATLOCK, H A ATWATER et al. Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Physical Review B, 72, 075405(2005).

    [82] S G PARK, K H JIN, M YI et al. Enhancement of terahertz pulse emission by optical nanoantenna. ACS Nano, 6, 2026-2031(2012).

    [83] A JOOSHESH, V BAHRAMI-YEKTA, J ZHANG et al. Plasmon-enhanced below bandgap photoconductive terahertz generation and detection. Nano Letters, 15, 8306(2015).

    [84] M BASHIRPOUR, J POURSAFAR, M KOLAHDOUZ et al. Terahertz radiation enhancement in dipole photoconductive antenna on LT-GaAs using a gold plasmonic nanodisk array. Optics and Laser Technology, 120, 105726(2019).

    [85] S H YANG, M R HASHEMI, C W BERRY et al. 7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes. IEEE Transaction on Terahertz Science and Technology, 4, 575-581(2014).

    [86] B HESHMAT, H PAHLEVANINEZHAD, Y PANG et al. Nanoplasmonic terahertz photoconductive switch on GaAs. Nano Letters, 12, 6255(2012).

    [87] C W BERRY, M R HASHEMI, S PREU et al. High power terahertz generation using 1550 nm plasmonic photomixers. Applied Physics Letters, 105, 011121(2014).

    [88] N WANG, S CAKMAKYAPAN, Y J LIN et al. Room-temperature heterodyne terahertz detection with quantum-level sensitivity. Nature Astronomy, 3, 977-982(2019).

    [89] H R BARDOLAZA, N I F CABELLO, J P R FERROLINO et al. Integrated optics spiral photoconductive antennas coupled with 1D and 2D micron-size terahertz-wavelength plasmonic metal arrays. Optical Materials Express, 12, 1617-1626(2022).

    [90] N T YARDIMCI, S H YANG, C W BERRY et al. High-power terahertz generation using large-area plasmonic photoconductive emitters. IEEE Transactions on Terahertz Science and Technology, 5, 223-229(2015).

    [91] N T YARDIMCI, H LU, M JARRAHI et al. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays. Applied Physics Letters, 109, 284-286(2016).

    [92] N T YARDIMCI, M JARRAHI. High sensitivity terahertz detection through large-area plasmonic nano-antenna arrays. Scientific Reports, 7, 42667(2017).

    [93] D TURAN, N T YARDIMCI, M JARRAHI. Plasmonics-enhanced photoconductive terahertz detector pumped by Ytterbium-doped fiber laser. Optics Express, 28, 3835-3845(2020).

    [94] O MITROFANOV, I BRENER, T S LUK et al. Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity. ACS Photonics, 2, 1763-1768(2015).

    [95] N T YARDIMCI, S CAKMAKYAPAN, S HEMMATI et al. A high-power broadband terahertz source enabled by three-dimensional light confinement in a plasmonic nanocavity. Scientific Reports, 7, 4166(2017).

    [96] N M BURFORD, M J EVANS, M O EL-SHENAWEE. Plasmonic nanodisk thin-film terahertz photoconductive antenna. IEEE Transactions on Terahertz Science and Technology, 8, 237-247(2017).

    [97] X Q JIANG, W H FAN, C SONG et al. Terahertz photoconductive antenna based on antireflection dielectric metasurfaces with embedded plasmonic nanodisks. Applied Optics, 60, 7921-7928(2021).

    [98] M KHORSHIDI, G DADASHZADEH. Dielectric structure with periodic strips for increasing radiation power of photoconductive antennas: theoretical analysis. Journal of Infrared, Millimeter, and Terahertz Waves, 38, 609-629(2017).

    [99] O MITROFANOV, T SIDAY, R J THOMPSON et al. Efficient photoconductive terahertz detector with all-dielectric optical metasurface. APL Photonics, 3, 051703(2018).

    [100] N I CABELLO, A D L REYES, V SARMIENTO et al. Terahertz emission enhancement of gallium-arsenide-based photoconductive antennas by silicon nanowire coating. IEEE Transactions on Terahertz Science and Technology, 12, 36-41(2022).

    [101] K M WANG, J Q GU, W Q SHI et al. All-dielectric nanograting for increasing terahertz radiation power of photoconductive antennas. Optics Express, 28, 19144-19151(2020).

    [102] T SIDAY, P P VABISHCHEVICH, L HALE et al. Terahertz detection with perfectly-absorbing photoconductive metasurface. Nano Letters, 19, 2888-2896(2019).

    [103] L L HALE, C T HARRIS, T S LUK et al. Highly efficient terahertz photoconductive metasurface detectors operating at microwatt-level gate powers. Optics Letters, 46, 3159-3162(2021).

    [104] K A KUZNETSOV, D A SAFRONENKOV, I KUZNETSOV PETR et al. Terahertz photoconductive antenna based on a topological insulator nanofilm. Applied Sciences, 11, 5580(2021).

    [105] T OKAMOTO, N FUJIMURA, L CRESPI et al. Terahertz detection with an antenna-coupled highly-doped silicon quantum dot. Scientific Reports, 9, 18574(2019).

    [106] H LI, W H FAN, J LIU. Analysis of terahertz generation characteristic affected by injured photoconductive antenna, 8909, 89090I(2013).

    [107] H LI, W H FAN, J Liu. Investigation on terahertz generation by controlling the laser spot size on photoconductive antenna. Infrared and Laser Engineering, 44, 528-533(2015).

    [108] T C SHEN, G B GAO, H MORKOC. Recent developments in ohmic contacts for III-V compound semiconductors. Journal of Vacuum Science and Technology B, 10, 2113-2132(1992).

    [109] A PIOTROWSKA, H A GUIVARC, G PELOUS. Ohmic contacts to III-V compound semiconductors: A review of fabrication techniques. Solid State Electronics, 26, 179-197(1983).

    [110] M MURAKAMI. Development of ohmic contact materials for GaAs integrated circuits. Materials Science Reports, 5, 273-317(1990).

    [111] D TURAN, S C CORZO-GARCIA, N T YARDIMCI et al. Impact of the metal adhesion layer on the radiation power of plasmonic photoconductive terahertz sources. Journal of Infrared, Millimeter, and Terahertz Waves, 38, 1448-1456(2017).

    [112] Z LILIENTAL‐WEBER, N NEWMAN, J WASHBURN et al. Influence of interfacial contamination on the structure and barrier height of Cr/GaAs Schottky contacts. Applied Physics Letters, 54, 356-358(1989).

    [113] W E SPICER, N NEWMAN, C J SPINDT et al. “Pinning” and Fermi level movement at GaAs surfaces and interfaces. Journal of Vacuum Science and Technology A, 8, 2084-2089(1998).

    [114] A LEITENSTORFER, S HUNSCHE, J SHAH et al. Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory. Applied Physics Letters, 74, 1516-1518(1999).

    [115] M R LEAHY-HOPPA, M J FITCH, R OSIANDER. Terahertz spectroscopy techniques for explosives detection. Analytical and Bioanalytical Chemistry, 395, 247-257(2009).

    [116] P U JEPSEN, B M FISCHER. Dynamic range in terahertz time-domain transmission and reflection spectroscopy. Optics Letters, 30, 29-31(2005).

    [117] A I MCINTOSH, B YANG, S M GOLDUP et al. Terahertz spectroscopy: a powerful new tool for the chemical sciences?. Chemical Society Reviews, 41, 2072-2082(2012).

    [118] A G DAVIES, A D BURNETT, W H FAN et al. Terahertz spectroscopy of explosives and drugs. Materials Today, 11, 18-26(2008).

    [119] Y UENO, R RUNGSAWANG, I TOMITA et al. Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy. Analytical Chemistry, 78, 5424-5428(2006).

    [120] Z J ZHU, J B ZHANG, Y S SONG et al. Broadband terahertz signatures and vibrations of dopamine. Analyst, 145, 6006-6013(2020).

    [121] X YANG, X ZHAO, K YANG et al. Biomedical applications of terahertz spectroscopy and imaging. Trends in Biotechnology, 34, 810-824(2016).

    [122] Q S SUN, Y Z HE, K LIU et al. Recent advances in terahertz technology for biomedical applications. Quantitative Imaging in Medicine and Surgery, 7, 345-355(2017).

    [123] J SIBIK, J A ZEITLER. Direct measurement of molecular mobility and crystallization of amorphous pharmaceuticals using terahertz spectroscopy. Advanced Drug Delivery Reviews, 100, 147-157(2016).

    [124] M R PATIL, S. B GANORKAR, A S PATIL et al. Terahertz spectroscopy: Encoding the discovery, instrumentation, and applications toward pharmaceutical prospective. Critical Reviews in Analytical Chemistry, 52, 343-355(2022).

    [125] K L NGUYEN, T FRISCIĆ, G M DAY et al. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nature Materials, 6, 206-209(2007).

    [126] S MITRYUKOVSKIY, D E P VANPOUCKE, Y BAI et al. On the influence of water on THz vibrational spectral features of molecular crystals. Physical Chemistry Chemical Physics, 24, 6107-6125(2022).

    [127] S G MOTTI, J B PATEL, R D J OLIVER et al. Phase segregation in mixed-halide perovskites affects charge-carrier dynamics while preserving mobility. Nature Communication, 12, 6955(2021).

    [128] U T TAYVAH, J NEU, J A SPIES et al. Ultrafast terahertz spectroscopy provides insight into charge transfer efficiency and dynamics in artificial photosynthesis. Photosynthesis Research, 151, 145-153(2022).

    [129] R E BOSELEY, J VONGSVIVUT, D APPADOO et al. Monitoring the chemical changes in fingermark residue over time using synchrotron infrared spectroscopy. Analyst, 147, 799-810(2022).

    [130] L CONSOLINO, S BARTALINI, D P NATALE. Terahertz frequency metrology for spectroscopic applications: a review. Journal of Infrared Millimeter and Terahertz Waves, 38, 1289-1315(2017).

    [131] G J WILMINK, B L IBEY, T TONGUE et al. Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues. Journal of Biomedical Optics, 16, 047006(2011).

    [132] S K PAL, J PEON, A H ZEWAIL. Biological water at the protein surface: dynamical solvation probed directly with femtosecond resolution. Proceedings of the National Academy of Sciences, 99, 1763-1768(2002).

    [133] B BORN, S J KIM, S EBBINGHAUS et al. The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin. Faraday Discussion, 141, 161-173(2009).

    [134] H AMARLOO, S SAFAVI-NAEINI. Enhanced on-chip terahertz vibrational absorption spectroscopy using evanescent fields in silicon waveguide structures. Optics Express, 29, 17343(2021).

    [135] K SHIRAGA, O YUICHI, K NAOSHI et al. Evaluation of the hydration state of saccharides using terahertz time-domain attenuated total reflection spectroscopy. Food Chemistry, 140, 315-320(2013).

    [136] S P MICKAN, A MENIKH, H LIU et al. Label-free bioaffinity detection using terahertz technology. Physics in Medicine and Biology, 47, 3789-3795(2002).

    [137] S ALFIHED, J F HOLZMAN, I G FOULDSA. Developments in the integration and application of terahertz spectroscopy with microfluidics. Biosensors and Bioelectronics, 165, 112393(2020).

    [138] S L SHEN, X D LIU, Y C SHEN et al. Recent advances in the development of materials for terahertz metamaterial sensing. Advanced Optical Materials, 10, 2101008(2022).

    [139] S JAHANI, Z JACOB. All-dielectric metamaterials. Nature Nanotechnology, 11, 23-36(2016).

    [140] X CHEN, W H FAN, C SONG. Multiple plasmonic resonance excitations on graphene metamaterials for ultrasensitive terahertz sensing. Carbon, 133, 416-422(2018).

    [141] H LI, W H XU, Q CUI et al. Theoretical design of a reconfigurable broadband integrated metamaterial terahertz device. Optics Express, 28, 40060-40074(2020).

    [142] S WALIA, C M SHAH, P GUTRUF et al. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales. Applied Physics Reviews, 2, 11303(2015).

    [143] H M SILALAHI, Y H SHIH, S H LIN et al. Electrically controllable terahertz metamaterials with large tunabilities and low operating electric fields using electrowetting-on-dielectric cells. Optics Letters, 46, 5962-5965(2021).

    [144] X CHEN, W H FAN. Toroidal metasurfaces integrated with microfluidic for terahertz refractive index sensing. Journal of Physics D: Applied Physics, 52, 485104(2019).

    [145] J B PENDRY, L MARTÍN-MORENO, F J GARCIA-VIDAL. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).

    [146] X Q JIANG, W H FAN, X CHEN et al. Ultrahigh-Q terahertz sensor based on simple all-dielectric metasurface with toroidal dipole resonance. Applied Physics Express, 14, 102008(2021).

    [147] X CHEN, W H FAN, X Q JIANG et al. High-Q toroidal dipole metasurfaces driven by bound states in the continuum for ultrasensitive terahertz sensing. Journal of Lightwave Technology, 40, 2181-2190(2022).

    [148] M GUPTA, Y K SRIVASTAVA, M MANJAPPA et al. Sensing with toroidal metamaterial. Applied Physics Letters, 110, 121108(2017).

    [149] C TANG, J CHEN, Q WANG et al. Toroidal dipolar response in metamaterials composed of metal-dielectric-metal sandwich magnetic resonators. IEEE Photonics Journal, 8, 1-9(2016).

    [150] WANGY , HANZ , DUY et al. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics, 1, 1295-1307(2021).

    [151] T Y ZENG, G D LIU, L L WANG et al. Light-matter interactions enhanced by quasi-bound states in the continuum in a graphene-dielectric metasurface. Optics Express, 29, 40177-40186(2021).

    [152] J J XU, D G LIAO, M GUPTA et al. Terahertz microfluidic sensing with dual-torus toroidal metasurfaces. Advanced Optical Materials, 9, 2100024(2021).

    [153] A AHMADIVAND, B GERISLIOGLU, A TOMITAKA et al. Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells. Biomedical Optics Express, 9, 373-386(2018).

    [154] B J HAN, Z H HAN, J Y QIN et al. A sensitive and selective terahertz sensor for the fingerprint detection of lactose. Talanta, 192, 1-5(2019).

    [155] D R HARTREE. The wave mechanics of an atom with a non-coulomb central field. I. Theory and methods. Proceedings of the Cambridge Philosophical Society, 24, 89-110(1928).

    [156] C MOLLER, M S PLESSET. Note on the approximation treatment for many-electron systems. Physical Review, 46, 618-622(1934).

    [157] P HOHENBERG, W KOHN. Inhomogeneous electron gas. Physical Review, 136, B864-B871(1964).

    [158] P J STEPHENS, F J DEVLIN, C F CHABALOWSKI et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. Journal of Physical Chemistry, 98, 11623-11627(1994).

    [159] A D BECKE. Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648-5652(1993).

    [160] J P PERDEW, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Physics Review Letters, 77, 3865-3868(1996).

    [161] J P PERDEW, J A CHEVARY, S H VOSKO et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46, 6671-6687(1992).

    [162] S B ANDREWS, N A BURTON, I H HILLIER et al. Molecular electronic structure calculations employing a plane wave basis: a comparison with Gaussian basis calculations. Chemical Physics Letters, 261, 521-526(1996).

    [163] H YAN, W H FAN, Z P ZHENG. Terahertz spectroscopy and theoretical analysis of DNA nucleobases: cytosine and thymine. Spectroscopy and Spectral Analysis, 33, 2612-2616(2013).

    [164] Z P ZHENG, W H FAN. First principle investigation of L-alanine in terahertz region. Journal of Biological Physics, 38, 405-413(2012).

    [165] Z P ZHENG, W H FAN, Y Q LIANG et al. Application of terahertz spectroscopy and molecular modeling in isomers investigation: Glucose and fructose. Optics Communication, 285, 1868-1871(2012).

    [166] Z P ZHENG, W H FAN, H LI et al. Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory. Journal of Molecular Spectroscopy, 296, 9-13(2014).

    [167] H YAN, W H FAN, X CHEN et al. Terahertz signatures and quantitative analysis of glucose anhydrate and monohydrate mixture. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 258, 119825(2021).

    [168] Z P ZHENG, W H FAN, H YAN. Study on THz spectra and vibrational modes of benzoic acid and sodium benzoate. Spectroscopy and Spectral Analysis, 33, 582-585(2013).

    [169] L DING, W H FAN, C SONG et al. Terahertz spectroscopic investigation of salicylic acid and sodium salicylate. Journal of Applied Spectroscopy, 85, 1143-1150(2019).

    [170] Z P ZHENG, W H FAN, H YAN. Terahertz absorption spectra of benzene-1,2-diol, benzene-1,3-diol and benzene-1,4-diol. Chemical Physics Letters, 525-526, 140-143(2012).

    [171] Z P ZHENG, W H FAN, H YAN et al. Terahertz and mid-infrared spectroscopy of benzene-1,2-diol. Journal of Molecular Spectroscopy, 281, 13-17(2012).

    [172] S WNENDT, K ZWINGENBERGER. Thalidomide's chirality. Nature, 385, 303-304(1997).

    [173] W A TAO, F C GOZZO, R G COOKS. Mass spectrometric quantitation of chiral drugs by the kinetic method. Analytical Chemistry, 73, 1692-1698(2001).

    [174] Z F WANG, Y PENG, C J SHI et al. Qualitative and quantitative recognition of chiral drugs based on terahertz spectroscopy. Analyst, 146, 3888-3898(2021).

    [175] W N SHI, F FAN, Z Y ZHANG et al. Terahertz sensing for R/S chiral ibuprofen via all-dielectric metasurface with higher-order resonance. Applied Sciences, 11, 8892(2021).

    [176] Z Y ZHANG, C Z ZHONG, F FAN et al. Terahertz polarization and chirality sensing for amino acid solution based on chiral metasurface sensor. Sensors and Actuators: B. Chemical, 330, 129315(2021).

    [177] G M BROWN, H A LEVY. α-D-Glucose: further refinement based on neutron-diffraction data. Acta Crystallographica Section B, 35, 656-659(1979).

    [178] E HOUGH, S NEIDLE, D ROGERS et al. The crystal structure of α-D-glucose monohydrate. Acta Crystallographica Section B, 29, 365-367(1973).

    [179] J E HADDAD, F D MIOLLIS, J B SLEIMAN et al. Chemometrics applied to quantitative analysis of ternary mixtures by terahertz spectroscopy. Analytical Chemistry, 86, 4927-4933(2014).

    [180] Y PENG, X R YUAN, X ZOU et al. Terahertz identification and quantification of neurotransmitter and neurotrophy mixture. Biomedical Optics Express, 7, 4472-4479(2016).

    [181] Q F JING, D M LIU, J C TONG. Study on the scattering effect of terahertz waves in near-surface atmosphere. IEEE Access, 6, 49007-49018(2018).

    [182] A BELOUCHRANI, K ABEDMERAIM, J F CARDOSO et al. A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing, 45, 434-444(1997).

    [183] L L ZHEN, D Z PENG, Z YI et al. Underdetermined blind source separation using sparse coding. IEEE Transactions on Neural Networks and Learning Systems, 28, 3102-3108(2017).

    [184] M R PANMAN, P BODIS, D J SHAW et al. Time-resolved vibrational spectroscopy of a molecular shuttle. Physical Chemistry Chemical Physics, 6, 1865-1875(2012).

    [185] D D LEE, H S SEUNG. Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788-791(1999).

    [186] J J PAN, N GILLIS. Generalized separable nonnegative matrix factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 1546-1561(2021).

    [187] W WINDIG, S MARKEL. Simple-to-use interactive self-modeling mixture analysis of FTIR microscopy data. Journal of Molecular Structure, 292, 161-170(1993).

    [188] W WINDIG, B ANTALEK, J L LIPPERT et al. Combined use of conventional and second-derivative data in the SIMPLISMA self-modeling mixture analysis approach. Analytical Chemistry, 74, 1371-1379(2002).

    [189] A J SMOLA, B SCHOLKOPF. A tutorial on support vector regression. Statistics and Computing, 14, 199-222(2004).

    [190] W W ZHENG, D J TIAN, X WANG et al. Support vector machine: classifying and predicting mutagenicity of complex mixtures based on pollution profiles. Toxicology, 313, 151-159(2013).

    [191] A AHMADIVAND, B GERISLIOGLU, Z RAMEZANI. Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins. Biosensors and Bioelectronics, 177, 112971(2021).

    Wenhui FAN, Hui YAN, Xiaoqiang JIANG, Longchao CHEN, Zhuanping ZHENG, Jia LIU, Hui LI, Ling DING, Chao SONG. Ultrafast Terahertz Characteristic Spectroscopy Based on Femtosecond Laser and Its Application(Invited)[J]. Acta Photonica Sinica, 2022, 51(7): 0751403
    Download Citation