• Chinese Journal of Lasers
  • Vol. 48, Issue 24, 2407001 (2021)
Yang Zhang1、2, Tengchao He1、3, Weishuai Zhong1、3, Meili Dong1、3, Jingshu Ni1、2, Yong Liu1, Yikun Wang1、3、**, and Yuanzhi Zhang1、*
Author Affiliations
  • 1Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Laboratory for Medical Optical Diagnosis & Treatment Technology and Instrument, Hefei, Anhui 230031, China;
  • 2Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, Anhui 230026, China
  • 3Wan Jiang New Industry Technology Development Center, Tongling, Anhui 244000, China
  • show less
    DOI: 10.3788/CJL202148.2407001 Cite this Article Set citation alerts
    Yang Zhang, Tengchao He, Weishuai Zhong, Meili Dong, Jingshu Ni, Yong Liu, Yikun Wang, Yuanzhi Zhang. Flow Mediated Tissue Fluorescence Measurement System and Phantom Verification[J]. Chinese Journal of Lasers, 2021, 48(24): 2407001 Copy Citation Text show less
    References

    [2] Roustit M, Cracowski J L. Assessment of endothelial and neurovascular function in human skin microcirculation[J]. Trends in Pharmacological Sciences, 34, 373-384(2013).

    [3] Hellmann M, Roustit M, Cracowski J L. Skin microvascular endothelial function as a biomarker in cardiovascular diseases?[J]. Pharmacological Reports, 67, 803-810(2015).

    [4] Piotrowski L, Urbaniak M, Jedrzejczak B et al. Note: flow mediated skin fluorescence: a novel technique for evaluation of cutaneous microcirculation[J]. The Review of Scientific Instruments, 87, 036111(2016).

    [5] Tarnawska M, Dorniak K, Kaszubowski M et al. A pilot study with flow mediated skin fluorescence: a novel device to assess microvascular endothelial function in coronary artery disease[J]. Cardiology Journal, 25, 120-127(2018).

    [6] Katarzynska J, Borkowska A, Czajkowski P et al. Flow mediated skin fluorescence technique reveals remarkable effect of age on microcirculation and metabolic regulation in type 1 diabetes[J]. Microvascular Research, 124, 19-24(2019).

    [7] Katarzynska J, Borkowska A, Los A et al. Flow-mediated skin fluorescence (FMSF) technique for studying vascular complications in type 2 diabetes[J]. Journal of Diabetes Science and Technology, 14, 693-694(2020).

    [8] Zhong X W, Wen X, Zhu D. Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments[J]. Optics Express, 22, 1852-1864(2014).

    [9] Zhang Y Z, Hou H Y, Zhang Y et al. Tissue intrinsic fluorescence recovering by an empirical approach based on the PSO algorithm and its application in type 2 diabetes screening[J]. Biomedical Optics Express, 9, 1795-1808(2018).

    [10] Valdés P A, Leblond F, Kim A et al. A spectrally constrained dual-band normalization technique for protoporphyrin IX quantification in fluorescence-guided surgery[J]. Optics Letters, 37, 1817-1819(2012).

    [11] Zhang Y Z, Liu Y, Hou H Y et al. Intrinsic tissue fluorescence spectrum recovery based on particle swarm optimization algorithm[J]. Chinese Journal of Lasers, 43, 0504001(2016).

    [12] Ding L M, Dai L J, Zhang L et al. Transmission of a laser emitted from an interpolated optical fiber in tissue based on Monte Carlo method[J]. Chinese Journal of Lasers, 47, 0207040(2020).

    [13] Hennessy R J, Lim S L, Markey M K et al. Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy[J]. Journal of Biomedical Optics, 18, 037003(2013).

    [14] Feng W, Shi R, Zhang C et al. Lookup-table-based inverse model for mapping oxygen concentration of cutaneous microvessels using hyperspectral imaging[J]. Optics Express, 25, 3481-3495(2017).

    [15] Bashkatov A N, Genina E A, Tuchin V V. Optical properties of skin, subcutaneous, and muscle tissues: a review[J]. Journal of Innovative Optical Health Sciences, 4, 9-38(2011).

    [16] Hong P, Liu H W, Jin G H et al. Determination of ATP, ADP, AMP, NAD +, NADH in skeletal muscle by HPLC[J]. Chinese Journal of Sports Medicine, 21, 57-60(2002).

    [17] Zhang Y, Ni J S, Zhang Y Z et al. Tissue intrinsic fluorescence spectrum recovery algorithm and its application in diabetes screening[J]. Chinese Journal of Lasers, 45, 0707001(2018).

    [18] Hull E L, Nichols M G, Foster T H. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes[J]. Physics in Medicine and Biology, 43, 3381-3404(1998).

    [19] Zhao Y, Qiu L N, Sun Y L et al. Optimal hemoglobin extinction coefficient data set for near-infrared spectroscopy[J]. Biomedical Optics Express, 8, 5151-5159(2017).

    [20] Bogaczewicz J, Tokarska K, Wozniacka A. Changes of NADH fluorescence from the skin of patients with systemic lupus erythematosus[J]. BioMed Research International, 2019, 5897487(2019).

    [21] Majewski S, Szewczyk K, Białas A J et al. Assessment of microvascular function in vivo using flow mediated skin fluorescence (FMSF) in patients with obstructive lung diseases: a preliminary study[J]. Microvascular Research, 127, 103914(2020).

    Yang Zhang, Tengchao He, Weishuai Zhong, Meili Dong, Jingshu Ni, Yong Liu, Yikun Wang, Yuanzhi Zhang. Flow Mediated Tissue Fluorescence Measurement System and Phantom Verification[J]. Chinese Journal of Lasers, 2021, 48(24): 2407001
    Download Citation