• Laser & Optoelectronics Progress
  • Vol. 57, Issue 24, 240901 (2020)
Minyuan Sun1、2、3, Yuan Yuan3, Yong Bi3、*, Jianying Zhu2、3, Shuo Zhang2、3, and Wenping Zhang3
Author Affiliations
  • 1Optical Engineering Research Department, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Applied Laser Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.3788/LOP57.240901 Cite this Article Set citation alerts
    Minyuan Sun, Yuan Yuan, Yong Bi, Jianying Zhu, Shuo Zhang, Wenping Zhang. Ray-Tracing Hologram Generation Algorithm Based on OptiX Ray-Tracing Engine[J]. Laser & Optoelectronics Progress, 2020, 57(24): 240901 Copy Citation Text show less
    References

    [1] Jin X Y, Gui J B, Liu C et al. Progress of fast generation algorithm of computer-generated hologram based on point source model[J]. Laser & Optoelectronics Progress, 55, 100005(2018).

    [2] Pi D P, Liu J, Kang R D et al. Reducing the memory usage of computer-generated hologram calculation using accurate high-compressed look-up-table method in color 3D holographic display[J]. Optics Express, 27, 28410-28422(2019). http://www.researchgate.net/publication/335956802_Reducing_the_memory_usage_of_computer-generated_hologram_calculation_using_accurate_high-compressed_look-up-table_method_in_color_3D_holographic_display

    [3] Jiang X Y, Cong B, Pei C et al. A new look-up table method of holographic algorithms based on compute unified device architecture parallel computing[J]. Acta Optica Sinica, 35, 0209001(2015).

    [4] Arai D, Shimobaba T, Nishitsuji T et al. An accelerated hologram calculation using the wavefront recording plane method and wavelet transform[J]. Optics Communications, 393, 107-112(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=949a24ff43978e3a65f2e0da39f3be80

    [5] Nishitsuji T, Yamamoto Y, Sugie T et al. Special-purpose computer HORN-8 for phase-type electro-holography[J]. Optics Express, 26, 26722-26733(2018). http://www.researchgate.net/publication/327948787_Special-purpose_computer_HORN-8_for_phase-type_electro-holography

    [6] Murano K, Shimobaba T, Sugiyama A et al. Fast computation of computer-generated hologram using Xeon Phi coprocessor[J]. Computer Physics Communications, 185, 2742-2757(2014).

    [7] Ikawa S, Takada N, Araki H et al. Real-time color holographic video reconstruction using multiple-graphics processing unit cluster acceleration and three spatial light modulators[J]. Chinese Optics Letters, 18, 010901(2020). http://www.opticsjournal.net/Articles/Abstract?aid=OJ43799ec45c87b300

    [8] Whitted T. An improved illumination model for shaded display[J]. Communications of the ACM, 23, 343-349(1980).

    [9] Ichikawa T, Yamaguchi K, Sakamoto Y. Realistic expression for full-parallax computer-generated holograms with the ray-tracing method[J]. Applied Optics, 52, A201-A209(2013).

    [10] Wang Y, Sang X Z, Chen Z D et al. Real-time photorealistic computer-generated holograms based on backward ray tracing and wavefront recording planes[J]. Optics Communications, 429, 12-17(2018).

    [11] Parker S G, Bigler J, Dietrich A et al. OptiX: a general purpose ray tracing engine[J]. ACM Transactions on Graphics, 29, 66(2010).

    [12] Ning R, Li C G, Lou Y L et al. Matlab fast algorithm of computer generated holograms based on multi-graphic processing unit[J]. Laser & Optoelectronics Progress, 56, 050901(2019).

    Minyuan Sun, Yuan Yuan, Yong Bi, Jianying Zhu, Shuo Zhang, Wenping Zhang. Ray-Tracing Hologram Generation Algorithm Based on OptiX Ray-Tracing Engine[J]. Laser & Optoelectronics Progress, 2020, 57(24): 240901
    Download Citation