• Acta Optica Sinica
  • Vol. 41, Issue 12, 1205001 (2021)
Guanghua Yang1、2, Yu Wang1、2, Jing Li1、2、*, Yuejing Qi1、2, and Minxia Ding1
Author Affiliations
  • 1Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS202141.1205001 Cite this Article Set citation alerts
    Guanghua Yang, Yu Wang, Jing Li, Yuejing Qi, Minxia Ding. Diffraction Efficiency of Enhanced Phase Grating[J]. Acta Optica Sinica, 2021, 41(12): 1205001 Copy Citation Text show less
    References

    [1] den Boef A J. Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing[J]. Surface Topography: Metrology and Properties, 4, 023001(2016). http://adsabs.harvard.edu/abs/2016SuTMP...4b3001D

    [2] alignment method, apparatus: US4547446[P]. -10-15. Tam W M. Motion measurement(1985).

    [3] Orji N G, Badaroglu M, Barnes B M et al. Metrology for the next generation of semiconductor devices[J]. Nature Electronics, 1, 532-547(2018). http://www.nature.com/articles/s41928-018-0150-9/

    [4] Bunday B, Bello A F, Solecky E et al. 7/5 nm logic manufacturing capabilities and requirements of metrology[J]. Proceedings of SPIE, 10585, 105850I(2018). http://adsabs.harvard.edu/abs/2018SPIE10585E..0IB

    [5] Li Y Q, Liu Y, Liu L H. Effect of thermal deformation on imaging performance for 16 nm extreme ultraviolet lithography objective[J]. Acta Optica Sinica, 39, 0122001(2019).

    [6] Du J Y, Dai F Z, Wang X Z. Calibration method for alignment error caused by asymmetric deformation of mark and its application in overlay measurement[J]. Chinese Journal of Lasers, 46, 0704004(2019).

    [7] Keij S. Setija I, van der Zouw G, et al. Advances in phase-grating-based wafer alignment systems[J]. Proceedings of SPIE, 5752, 948-960(2005).

    [8] Miyasaka M, Saito H, Tamura T et al. The application of SMASH alignment system for 65-55-nm logic devices[J]. Proceedings of SPIE, 6518, 65180H(2007).

    [9] Du J Y, Dai F Z, Bu Y et al. Alignment technique using moire fringes based on self-coherence in lithographic tools[J]. Chinese Journal of Lasers, 44, 1204006(2017).

    [10] Wittekoek S, van der Werf J, George R A. Phase gratings as waferstepper alignment marks for all process layers[J]. Proceedings of SPIE, 0538, 24-31(1985). http://spie.org/Publications/Proceedings/Paper/10.1117/12.947743

    [11] Lee B S, Kim Y H, Hwang H et al. Overcoming low-alignment signal contrast induced alignment failure by alignment signal enhancement[J]. Proceedings of SPIE, 9780, 97800B(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2504908

    [12] Bornebroek F, Burghoorn J, Greeneich J S et al. Overlay performance in advanced processes[J]. Proceedings of SPIE, 4000, 520-531(2000). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=896515

    [13] Cui Y T. Goodwin F, van Haren R. Segmented alignment mark optimization and signal strength enhancement for deep trench process[J]. Proceedings of SPIE, 5375, 1265-1277(2004). http://spie.org/x648.xml?product_id=532896

    [14] Hinnen P, Lee H W, Keij S et al. Flexible alignment mark design applications using a next generation phase grating alignment system[J]. Proceedings of SPIE, 5752, 363-374(2005). http://spie.org/Publications/Proceedings/Paper/10.1117/12.599494

    [15] Menchtchikov B, Socha R, Zheng C M et al. Reduction in overlay error from mark asymmetry using simulation, ORION, and alignment models[J]. Proceedings of SPIE, 10587, 105870C(2018). http://adsabs.harvard.edu/abs/2018SPIE10587E..0CM

    [16] Chen L W, Yang M, Yang E et al. Novel ATHENA mark design to enhance alignment quality in double patterning with spacer process[J]. Proceedings of SPIE, 7640, 764020(2010). http://spie.org/Publications/Proceedings/Paper/10.1117/12.846014

    [17] Zhou J M, Hickman C, He Y et al. Wafer quality analysis of various scribe line mark designs[J]. Proceedings of SPIE, 7971, 79711H(2011). http://spie.org/x648.xml?product_id=881551

    [18] Du J Y, Dai F Z, Wang X Z. Alignment mark optimization for improving signal-to-noise ratio of wafer alignment signal[J]. Applied Optics, 58, 9-14(2019). http://www.researchgate.net/publication/329756191_Alignment_mark_optimization_for_improving_signal-to-noise_ratio_of_wafer_alignment_signal

    [19] Zhang L B, Dong L S, Su X J et al. New alignment mark designs in single patterning and self-aligned double patterning[J]. Microelectronic Engineering, 179, 18-24(2017). http://www.sciencedirect.com/science/article/pii/S0167931717301442

    [20] Zhang L B, Feng Y B, Dong L S et al. New alignment mark design structures for higher diffraction order wafer quality enhancement[J]. Proceedings of SPIE, 10145, 101452C(2017). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2615878

    [21] Morrison R L. Symmetries that simplify the design of spot array phase gratings[J]. Journal of the Optical Society of America A, 9, 464-471(1992). http://www.opticsinfobase.org/abstract.cfm?uri=josaa-9-3-464

    [22] Xi P, Zhou C H, Zhao S et al. Design and fabrication of 64 × 64 spot array Dammann grating[J]. Chinese Journal of Lasers, 28, 369-371(2001).

    [23] Zhou C H[M]. Dammann grating principle and application, 5-7(2017).

    [24] Chen D W. Rigorous coupled wave analysis of the diffractive optics[D]. Hefei: University of Science and Technology of China(2004).

    Guanghua Yang, Yu Wang, Jing Li, Yuejing Qi, Minxia Ding. Diffraction Efficiency of Enhanced Phase Grating[J]. Acta Optica Sinica, 2021, 41(12): 1205001
    Download Citation