• Advanced Photonics
  • Vol. 4, Issue 6, 064001 (2022)
Zhaoyang Sun1, Yang Li1、*, Benfeng Bai1、*, Zhendong Zhu2, and Hongbo Sun1、*
Author Affiliations
  • 1Tsinghua University, State Key Laboratory of Precision Measurement and Instruments, Department of Precision Instrument, Beijing, China
  • 2National Institute of Metrology, Beijing, China
  • show less
    DOI: 10.1117/1.AP.4.6.064001 Cite this Article Set citation alerts
    Zhaoyang Sun, Yang Li, Benfeng Bai, Zhendong Zhu, Hongbo Sun. Silicon nitride-based Kerr frequency combs and applications in metrology[J]. Advanced Photonics, 2022, 4(6): 064001 Copy Citation Text show less
    References

    [1] Z. L. Newman et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [2] P. Trocha et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [3] T. Ideguchi et al. Adaptive real-time dual-comb spectroscopy. Nat. Commun., 5, 3375(2014).

    [4] M.-G. Suh et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics, 13, 25-30(2019).

    [5] P. Marin-Palomo et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [6] D. T. Spencer et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [7] T. Fortier, E. Baumann. 20 years of developments in optical frequency comb technology and applications. Commun. Phys., 2, 153(2019).

    [8] T. Herr et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 6, 480-487(2012).

    [9] J. Li, H. Lee, K. J. Vahala. Microwave synthesizer using an on-chip brillouin oscillator. Nat. Commun., 4, 2097(2013).

    [10] E. Lucas et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun., 11, 374(2020).

    [11] Y. K. Chembo, C. R. Menyuk. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A, 87, 053852(2013).

    [12] T. Herr et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 113, 123901(2014).

    [13] V. Brasch et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

    [14] M. H. P. Pfeiffer et al. Photonic damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J. Sel. Top. Quantum Electron., 24, 6101411(2018).

    [15] J. He, Y. Li. Design of on-chip mid-IR frequency comb with ultra-low power pump in near-IR. Opt. Express, 28, 30771-30783(2020).

    [16] S. Zhang et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 6, 206-212(2019).

    [17] B. Shen et al. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [18] L. A. Lugiato, R. Lefever. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett., 58, 2209-2211(1987).

    [19] P. Del’Haye et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [20] Q. Li et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 4, 193-203(2017).

    [21] M. Haelterman, S. Trillo, S. Wabnitz. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun., 91, 401-407(1992).

    [22] F. Castelli et al. The LLE, pattern formation and a novel coherent source. Eur. Phys. J. D, 71, 84(2017).

    [23] L. Maleki et al. High performance, miniature hyper-parametric microwave photonic oscillator. IEEE Int. Freq. Control Symp., 558-563(2010).

    [24] A. Matsko et al. Mode-locked Kerr frequency combs. Opt. Lett., 36, 2845-2847(2011).

    [25] T. Herr et al. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [26] C. Godey et al. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A, 89, 063814(2014).

    [27] S. Coen et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett., 38, 37-39(2013).

    [28] Y. K. Chembo, D. V. Strekalov, N. Yu. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys. Rev. Lett., 104, 103902(2010).

    [29] Y. K. Chembo, N. Yu. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A, 82, 033801(2010).

    [30] T. Hansson, D. Modotto, S. Wabnitz. On the numerical simulation of Kerr frequency combs using coupled mode equations. Opt. Commun., 312, 134-136(2014).

    [31] T. J. Kippenberg et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [32] V. S. Ilchenko, L. Maleki. Novel whispering-gallery resonators for lasers, modulators, and sensors. Proc. SPIE, 4270, 120-130(2001).

    [33] A. Savchenkov et al. Mode filtering in optical whispering gallery resonators. Electron. Lett., 41, 495-497(2005).

    [34] V. S. Ilchenko, X. S. Yao, L. Maleki. Microsphere integration in active and passive photonics devices. Proc. SPIE, 3930, 154-162(2000).

    [35] S. Spillane et al. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett., 91, 043902(2003).

    [36] R. Halir et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt. Lett., 37, 1685-1687(2012).

    [37] G. Moille et al. Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. Opt. Lett., 44, 4737-4740(2019).

    [38] M. H. Pfeiffer et al. Coupling ideality of integrated planar high-Q microresonators. Phys. Rev. Appl., 7, 024026(2017).

    [39] T. Kippenberg, S. Spillane, K. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

    [40] F. Li et al. Modeling frequency comb sources. Nanophotonics, 5, 292-315(2016).

    [41] D. J. Wilson et al. Gallium phosphide microresonator frequency combs, 1-2(2018).

    [42] J. Zhang et al. Stretching the spectra of Kerr frequency combs with self-adaptive boundary silicon waveguides. Adv. Photonics, 2, 046001(2020).

    [43] M. H. Pfeiffer et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica, 4, 684-691(2017).

    [44] P. Parra-Rivas et al. Origin and stability of dark pulse Kerr combs in normal dispersion resonators. Opt. Lett., 41, 2402-2405(2016).

    [45] S. Zhang, J. Silver, P. DelHaye. Spectral extension and synchronisation of microcombs in a single microresonator(2020).

    [46] P. Grelu. Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers(2015).

    [47] J. B. Bard. A model for generating aspects of zebra and other mammalian coat patterns. J. Theor. Biol., 93, 363-385(1981).

    [48] I. Barashenkov, Y. S. Smirnov. Existence and stability chart for the AC-driven, damped nonlinear schrödinger solitons. Phys. Rev. E, 54, 5707-5725(1996).

    [49] L. Lugiato et al. From the Lugiato–Lefever equation to microresonator-based soliton Kerr frequency combs. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 376, 20180113(2018).

    [50] A. Shabat, V. Zakharov. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP, 34, 62(1972).

    [51] D. Anderson. Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A, 27, 3135-3145(1983).

    [52] F. G. Mertens, N. R. Quintero, A. R. Bishop. Nonlinear schrödinger equation with spatiotemporal perturbations. Phys. Rev. E, 81, 016608(2010).

    [53] R. W. Boyd. Nonlinear Optics(2020).

    [54] A. B. Matsko, D. Eliyahu, L. Maleki. Theory of coupled optoelectronic microwave oscillator II: phase noise. J. Opt. Soc. Am. B, 30, 3316-3323(2013).

    [55] X. Yi. Physics and applications of microresonator solitons and electro-optic frequency combs(2017).

    [56] X. Xue, X. Zheng, B. Zhou. Second-harmonic induced soliton drifting and annihilation in microresonators, JW2A–42(2017).

    [57] C. Bao et al. Orthogonally polarized frequency comb generation from a Kerr comb via cross-phase modulation. Opt. Lett., 44, 1472-1475(2019).

    [58] H. Wang et al. Dirac solitons in optical microresonators. Light Sci. Appl., 9, 205(2020).

    [59] Ó. B. Helgason et al. Dissipative solitons in photonic molecules. Nat. Photonics, 15, 305-310(2021).

    [60] D. C. Cole et al. Soliton crystals in Kerr resonators. Nat. Photonics, 11, 671-676(2017).

    [61] B. Yao et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature, 558, 410-414(2018).

    [62] M. Karpov et al. Dynamics of soliton crystals in optical microresonators. Nat. Phys., 15, 1071-1077(2019).

    [63] Y. He et al. Perfect soliton crystals on demand. Laser Photonics Rev., 14, 1900339(2020).

    [64] A. S. Voloshin et al. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun., 12, 235(2021).

    [65] N. Kondratiev et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express, 25, 28167-28178(2017).

    [66] D. Armani et al. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [67] I. S. Grudinin, L. Baumgartel, N. Yu. Frequency comb from a microresonator with engineered spectrum. Opt. Express, 20, 6604-6609(2012).

    [68] N. Pavlov et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics, 12, 694-698(2018).

    [69] I. S. Grudinin et al. High-contrast Kerr frequency combs. Optica, 4, 434-437(2017).

    [70] I. S. Grudinin, A. B. Matsko, L. Maleki. On the fundamental limits of Q factor of crystalline dielectric resonators. Opt. Express, 15, 3390-3395(2007).

    [71] A. A. Savchenkov et al. Kilohertz optical resonances in dielectric crystal cavities. Phys. Rev. A, 70, 051804(2004).

    [72] A. A. Savchenkov et al. Optical resonators with ten million finesse. Opt. Express, 15, 6768-6773(2007).

    [73] G. Lihachev et al. Kerr frequency comb and Brillouin lasing in BAF2 whispering gallery mode resonator. Int. Conf. Laser Opt. (LO), PD-4(2016).

    [74] R. Henriet et al. Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor. Opt. Lett., 40, 1567-1570(2015).

    [75] X. Yi et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

    [76] L. Razzari et al. Cmos-compatible integrated optical hyper-parametric oscillator. Nat. Photonics, 4, 41-45(2010).

    [77] D. Chen et al. On-chip ultra-high-Q silicon oxynitride optical resonators. ACS Photonics, 4, 2376-2381(2017).

    [78] M. Ferrera et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat. Photonics, 2, 737-740(2008).

    [79] Y. Okawachi et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 36, 3398-3400(2011).

    [80] B. Hausmann et al. Diamond nonlinear photonics. Nat. Photonics, 8, 369-374(2014).

    [81] A. G. Griffith et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 6, 6299(2015).

    [82] M. Yu et al. Breather soliton dynamics in microresonators. Nat. Commun., 8, 14569(2017).

    [83] H. Jung et al. Kerr solitons with tantala ring resonators, NW2A–3(2019).

    [84] H. Jung et al. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett., 38, 2810-2813(2013).

    [85] C. Wang et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [86] Y. He et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1144(2019).

    [87] Z. Gong et al. Soliton microcomb generation at in z-cut lithium niobate microring resonators. Opt. Lett., 44, 3182-3185(2019).

    [88] M. Pu et al. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

    [89] L. Chang et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 11, 1331(2020).

    [90] K. Y. Yang et al. Ultra-high-Q silica-on-silicon ridge-ring-resonator with an integrated silicon nitride waveguide, JTh4B–7(2016).

    [91] J.-F. Ku et al. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing. Opt. Lett., 36, 2871-2873(2011).

    [92] A. Rahim et al. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol., 35, 639-649(2017).

    [93] C. H. Henry et al. Low loss Si3N4-SiO2 optical waveguides on Si. Appl. Opt., 26, 2621-2624(1987).

    [94] K. Luke et al. Overcoming Si3N4 film stress limitations for high quality factor ring resonators. Opt. Express, 21, 22829-22833(2013).

    [95] C. J. Krückel et al. Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides. Opt. Express, 23, 25827-25837(2015).

    [96] K. Ooi et al. Pushing the limits of cmos optical parametric amplifiers with usrn: Si7N4 above the two-photon absorption edge. Nat. Commun., 8, 13878(2017).

    [97] M. H. Pfeiffer et al. Photonic damascene process for integrated high-Q microresonator based nonlinear photonics. Optica, 3, 20-25(2016).

    [98] A. Gondarenko, J. S. Levy, M. Lipson. High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express, 17, 11366-11370(2009).

    [99] M. H. Pfeiffer et al. Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins. Optica, 5, 884-892(2018).

    [100] X. Ji et al. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photonics, 6, 071101(2021).

    [101] Z. Ye et al. High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express, 27, 35719-35727(2019).

    [102] M. W. Puckett et al. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun., 12, 934(2021).

    [103] R. J. Bojko et al. Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides. J. Vac. Sci. Technol. B, 29, 06F309(2011).

    [104] X. Ji et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619-624(2017).

    [105] J. Liu et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [106] H. El Dirani et al. Ultralow-loss tightly confining Si3N4 waveguides and high-Q microresonators. Opt. Express, 27, 30726-30740(2019).

    [107] Y. Li et al. Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. Light Sci. Appl., 9, 52(2020).

    [108] W. Wang, L. Wang, W. Zhang. Advances in soliton microcomb generation. Adv. Photonics, 2, 034001(2020).

    [109] D. C. Cole et al. Kerr-microresonator solitons from a chirped background. Optica, 5, 1304-1310(2018).

    [110] T. C. Briles et al. Interlocking Kerr-microresonator frequency combs for microwave to optical synthesis. Opt. Lett., 43, 2933-2936(2018).

    [111] V. Brasch et al. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express, 24, 29312-29320(2016).

    [112] H. Zhou et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

    [113] H. Guo et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

    [114] C. Joshi et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett., 41, 2565-2568(2016).

    [115] Z. Lu et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv., 9, 025314(2019).

    [116] J. Wang et al. Deterministic single soliton formation and manipulation in anomalous dispersion microresonators via parametric seeding. IEEE Photonics J., 10, 6100608(2018).

    [117] T. E. Drake et al. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photonics, 14, 480-485(2020).

    [118] X. Yi et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2017).

    [119] J. D. Jost et al. Counting the cycles of light using a self-referenced optical microresonator. Optica, 2, 706-711(2015).

    [120] P. Del’Haye et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photonics, 10, 516-520(2016).

    [121] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [122] T. Wildi et al. Thermally stable access to microresonator solitons via slow pump modulation. Opt. Lett., 44, 4447-4450(2019).

    [123] K. H. Nam, I. H. Park, S. H. Ko. Patterning by controlled cracking. Nature, 485, 221-224(2012).

    [124] B. Stern et al. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [125] E. Obrzud et al. A microphotonic astrocomb. Nat. Photonics, 13, 31-35(2019).

    [126] M.-G. Suh et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [127] C. Gu et al. Passive coherent dual-comb spectroscopy based on optical-optical modulation with free running lasers. PhotoniX, 1, 7(2020).

    [128] Y. Wang et al. Scanning dual-microcomb spectroscopy. Sci. China Phys. Mech. Astron., 65, 294211(2022).

    [129] C. Bao et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nat. Commun., 12, 6573(2021).

    [130] J. Wu et al. RF photonics: an optical microcombs’ perspective. IEEE J. Sel. Top. Quantum Electron., 24, 6101020(2018).

    [131] X. Xue et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. J. Lightwave Technol., 32, 3557-3565(2014).

    [132] T. G. Nguyen et al. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt. Express, 23, 22087-22097(2015).

    [133] X. Xu et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics, 2, 096104(2017).

    [134] X. Xu et al. Advanced RF and microwave functions based on an integrated optical frequency comb source. Opt. Express, 26, 2569-2583(2018).

    [135] F. Ferdous et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photonics, 5, 770-776(2011).

    [136] X. Xue et al. Microresonator frequency combs for integrated microwave photonics. IEEE Photonics Technol. Lett., 30, 1814-1817(2018).

    [137] T. Yasui et al. Terahertz frequency metrology based on frequency comb. IEEE J. Sel. Top. Quantum Electron., 17, 191-201(2010).

    [138] S. Zhang et al. Terahertz wave generation using a soliton microcomb. Opt. Express, 27, 35257-35266(2019).

    [139] A. Fülöp et al. Long-haul coherent communications using microresonator-based frequency combs. Opt. Express, 25, 26678-26688(2017).

    [140] J. Pfeifle et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics, 8, 375-380(2014).

    [141] H. Shu et al. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).

    [142] A. Fülöp et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 9, 1598(2018).

    [143] J. Feldmann et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [144] C. Reimer et al. Integrated frequency comb source of heralded single photons. Opt. Express, 22, 6535-6546(2014).

    [145] N. C. Menicucci, S. T. Flammia, O. Pfister. One-way quantum computing in the optical frequency comb. Phys. Rev. Lett., 101, 130501(2008).

    [146] M. Kues et al. Quantum optical microcombs. Nat. Photonics, 13, 170-179(2019).

    [147] C. Reimer et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 351, 1176-1180(2016).

    [148] M. Kues et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622-626(2017).

    [149] F.-X. Wang et al. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photonics Rev., 14, 1900190(2020).

    [150] L. Caspani et al. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs. Nanophotonics, 5, 351-362(2016).

    [151] C. Xiong, B. Bell, B. J. Eggleton. CMOS-compatible photonic devices for single-photon generation. Nanophotonics, 5, 427-439(2016).

    [152] R. Wakabayashi et al. Time-bin entangled photon pair generation from Si micro-ring resonator. Opt. Express, 23, 1103-1113(2015).

    [153] D. Grassani et al. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2, 88-94(2015).

    [154] P. Imany et al. 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt. Express, 26, 1825-1840(2018).

    [155] F. Keilmann, C. Gohle, R. Holzwarth. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett., 29, 1542-1544(2004).

    [156] H. Zhang et al. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt. Express, 22, 6597-6604(2014).

    [157] J. Riemensberger et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).

    [158] A. Lukashchuk et al. Dual chirped microcomb based parallel ranging at megapixel-line rates. Nat. Commun., 13, 3280(2022).

    [159] A. Lukashchuk et al. Chaotic micro-comb based parallel ranging(2021).

    [160] T. E. Drake et al. Terahertz-rate Kerr-microresonator optical clockwork. Phys. Rev. X, 9, 031023(2019).

    [161] C. Xiang et al. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [162] M. G. Vazimali, S. Fathpour. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv. Photonics, 4, 034001(2022).

    [163] G. Chen et al. Advances in lithium niobate photonics: development status and perspectives. Adv. Photonics, 4, 034003(2022).

    Zhaoyang Sun, Yang Li, Benfeng Bai, Zhendong Zhu, Hongbo Sun. Silicon nitride-based Kerr frequency combs and applications in metrology[J]. Advanced Photonics, 2022, 4(6): 064001
    Download Citation