• Photonics Research
  • Vol. 7, Issue 11, 1229 (2019)
Cheng-Hua Bai1, Dong-Yang Wang1, Shou Zhang1、2、3, Shutian Liu1, and Hong-Fu Wang2、*
Author Affiliations
  • 1Department of Physics, Harbin Institute of Technology, Harbin 150001, China
  • 2Department of Physics, College of Science, Yanbian University, Yanji 133002, China
  • 3e-mail: szhang@ybu.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.001229 Cite this Article Set citation alerts
    Cheng-Hua Bai, Dong-Yang Wang, Shou Zhang, Shutian Liu, Hong-Fu Wang. Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving[J]. Photonics Research, 2019, 7(11): 1229 Copy Citation Text show less
    References

    [1] M. O. Scully, M. S. Zubairy. Quantum Optics(1997).

    [2] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, M. Zimmermann. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Rev. Mod. Phys., 52, 341-392(1980).

    [3] A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker. LIGO: the laser interferometer gravitational-wave observatory. Science, 256, 325-333(1992).

    [4] M. D. LaHaye, O. Buu, B. Camarota, K. C. Schwab. Approaching the quantum limit of a nanomechanical resonator. Science, 304, 74-77(2004).

    [5] M. Aspelmeyer, P. Meystre, K. Schwab. Quantum optomechanics. Phys. Today, 65, 29-35(2012).

    [6] W. H. Zurek. Decoherence and the transition from quantum to classical. Phys. Today, 44, 36-44(1991).

    [7] T. J. Kippenberg, K. J. Vahala. Cavity optomechanics: back-action at the mesoscale. Science, 321, 1172-1176(2008).

    [8] S. L. Braunstein, P. van Loock. Quantum information with continuous variables. Rev. Mod. Phys., 77, 513-577(2005).

    [9] D. F. Walls. Squeezed states of light. Nature, 306, 141-146(1983).

    [10] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett., 55, 2409-2412(1985).

    [11] L. A. Wu, H. J. Kimble, J. L. Hall, H. Wu. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett., 57, 2520-2523(1986).

    [12] J. N. Hollenhorst. Quantum limits on resonant-mass gravitational-radiation detectors. Phys. Rev. D, 19, 1669-1679(1979).

    [13] H. Lü, Y. Jiang, Y. Z. Wang, H. Jing. Optomechanically induced transparency in a spinning resonator. Photon. Res., 5, 367-371(2017).

    [14] S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger. Self-cooling of a micromirror by radiation pressure. Nature, 444, 67-70(2006).

    [15] T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, K. C. Schwab. Preparation and detection of a mechanical resonator near the ground state of motion. Nature, 463, 72-75(2010).

    [16] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475, 359-363(2011).

    [17] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478, 89-92(2011).

    [18] J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, J. D. Teufel. Sideband cooling beyond the quantum backaction limit with squeezed light. Nature, 541, 191-195(2017).

    [19] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, J. G. E. Harris. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature, 452, 72-75(2008).

    [20] S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature, 460, 724-727(2009).

    [21] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, J. G. E. Harris. Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys., 6, 707-712(2010).

    [22] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [23] A. Mari, J. Eisert. Gently modulating optomechanical systems. Phys. Rev. Lett., 103, 213603(2009).

    [24] J. Q. Liao, C. K. Law. Parametric generation of quadrature squeezing of mirrors in cavity optomechanics. Phys. Rev. A, 83, 033820(2011).

    [25] M. Schmidt, M. Ludwig, F. Marquardt. Optomechanical circuits for nanomechanical continuous variable quantum state processing. New J. Phys., 14, 125005(2012).

    [26] C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, H. F. Wang. Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system. Ann. Phys., 531, 1800271(2019).

    [27] M. J. Woolley, A. C. Doherty, G. J. Milburn, K. C. Schwab. Nanomechanical squeezing with detection via a microwave cavity. Phys. Rev. A, 78, 062303(2008).

    [28] A. Kronwald, F. Marquardt, A. A. Clerk. Arbitrarily large steady-state bosonic squeezing via dissipation. Phys. Rev. A, 88, 063833(2013).

    [29] R. Zhang, Y. Fang, Y. Y. Wang, S. Chesi, Y. D. Wang. Strong mechanical squeezing in an unresolved-sideband optomechanical system. Phys. Rev. A, 99, 043805(2019).

    [30] K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, P. Zoller. Cavity-assisted squeezing of a mechanical oscillator. Phys. Rev. A, 79, 063819(2009).

    [31] A. Nunnenkamp, K. Børkje, J. G. E. Harris, S. M. Girvin. Cooling and squeezing via quadratic optomechanical coupling. Phys. Rev. A, 82, 021806(2010).

    [32] M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, D. Vitali. Robust stationary mechanical squeezing in a kicked quadratic optomechanical system. Phys. Rev. A, 89, 023849(2014).

    [33] S. Huang, G. S. Agarwal. Reactive coupling can beat the motional quantum limit of nanowaveguides coupled to a microdisk resonator. Phys. Rev. A, 82, 033811(2010).

    [34] W. J. Gu, G. X. Li, Y. P. Yang. Generation of squeezed states in a movable mirror via dissipative optomechanical coupling. Phys. Rev. A, 88, 013835(2013).

    [35] W. J. Gu, G. X. Li. Squeezing of the mirror motion via periodic modulations in a dissipative optomechanical system. Opt. Express, 21, 20423-20440(2013).

    [36] X. Y. Lü, J. Q. Liao, L. Tian, F. Nori. Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Phys. Rev. A, 91, 013834(2015).

    [37] B. Xiong, X. Li, S. L. Chao, L. Zhou. Optomechanical quadrature squeezing in the non-Markovian regime. Opt. Lett., 43, 6053-6056(2018).

    [38] A. A. Clerk, F. Marquardt, K. Jacobs. Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J. Phys., 10, 095010(2008).

    [39] A. Szorkovszky, A. C. Doherty, G. I. Harris, W. P. Bowen. Mechanical squeezing via parametric amplification and weak measurement. Phys. Rev. Lett., 107, 213603(2011).

    [40] A. Szorkovszky, G. A. Brawley, A. C. Doherty, W. P. Bowen. Strong thermomechanical squeezing via weak measurement. Phys. Rev. Lett., 110, 184301(2013).

    [41] R. Ruskov, K. Schwab, A. N. Korotkov. Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback. Phys. Rev. B, 71, 235407(2005).

    [42] A. Dalafi, M. H. Naderi, A. Motazedifard. Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate. Phys. Rev. A, 97, 043619(2018).

    [43] A. Farace, V. Giovannetti. Enhancing quantum effects via periodic modulations in optomechanical systems. Phys. Rev. A, 86, 013820(2012).

    [44] D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, H. F. Wang. Optomechanical cooling beyond the quantum backaction limit with frequency modulation. Phys. Rev. A, 98, 023816(2018).

    [45] J. F. Huang, J. Q. Liao, L. M. Kuang. Ultrastrong Jaynes-Cummings model(2019).

    [46] K. Jacobs, A. J. Landahl. Engineering giant nonlinearities in quantum nanosystems. Phys. Rev. Lett., 103, 067201(2009).

    [47] E. X. DeJesus, C. Kaufman. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A, 35, 5288-5290(1987).

    [48] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd. Gaussian quantum information. Rev. Mod. Phys., 84, 621-669(2012).

    [49] R. X. Chen, L. T. Shen, Z. B. Yang, H. Z. Wu. Transition of entanglement dynamics in an oscillator system with weak time-dependent coupling. Phys. Rev. A, 91, 012312(2015).

    [50] S. Chakraborty, A. K. Sarma. Entanglement dynamics of two coupled mechanical oscillators in modulated optomechanics. Phys. Rev. A, 97, 022336(2018).

    [51] D. F. Walls, G. J. Milburn. Quantum Optics(1994).

    [52] K. W. Xiao, N. Zhao, Z. Q. Yin. Bistability and squeezing of the librational mode of an optically trapped nanoparticle. Phys. Rev. A, 96, 013837(2017).

    CLP Journals

    [1] Biao Xiong, Xun Li, Shi-Lei Chao, Zhen Yang, Wen-Zhao Zhang, Weiping Zhang, Ling Zhou. Strong mechanical squeezing in an optomechanical system based on Lyapunov control[J]. Photonics Research, 2020, 8(2): 151

    Cheng-Hua Bai, Dong-Yang Wang, Shou Zhang, Shutian Liu, Hong-Fu Wang. Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving[J]. Photonics Research, 2019, 7(11): 1229
    Download Citation