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Previous works for achieving mechanical squeezing focused mainly on the sole squeezing manipulation method.
Here we study how to construct strong steady-state mechanical squeezing via the joint effect between Duffing
nonlinearity and parametric pump driving. We find that the 3 dB limit of strong mechanical squeezing can be
easily overcome from the joint effect of two different below 3 dB squeezing components induced by Duffing
nonlinearity and parametric pump driving, respectively, without the need of any extra technologies, such as quan-
tum measurement or quantum feedback. Especially, we first demonstrate that, in the ideal mechanical bath, the
joint squeezing effect just is the superposition of the two respective independent squeezing components. The
mechanical squeezing constructed by the joint effect is fairly robust against the mechanical thermal noise.
Moreover, different from previous mechanical squeezing detection schemes, which need to introduce an addi-
tional ancillary cavity mode, the joint mechanical squeezing effect in the present scheme can be directly measured
by homodyning the output field of the cavity with an appropriate phase. The joint idea opens up a new approach
to construct strong mechanical squeezing and can be generalized to realize other strong macroscopic quantum
effects. © 2019 Chinese Laser Press
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1. INTRODUCTION

The quantum fluctuations of a pair of quadrature observables,
such as the amplitude and phase of the field, or the position and
momentum of a mechanical oscillator, are bound by the
Heisenberg uncertainty relation [1]. However, if the fluctuation
of either of the two quadrature components is reduced below
the standard quantum limit, it will be accompanied by in-
creased fluctuation in the other quadrature. This is the so-called
squeezed state. Since the squeezed state is particularly useful for
improvement of the precision of quantum measurements at the
quantum level [2–4], test of the quantum theory fundamentals
[5], exploration of the borderline between quantum and
classical [6,7], and also an important resource in quantum in-
formation science for continuous-variable information process-
ing [8], achieving such a state has been actively pursued in the
past decades.

In the realm of optics, the quantum squeezing of light has
been observed in the 1980s [9–11]. However, due to the strong
decoherence from undesired coupling with the environment, it
has been a formidable challenge to obtain squeezing in the

motional state of the macroscopic massive object. Although
the squeezing in the oscillations of massive gravitational anten-
nae was proposed a long time ago [12], the technological
requirements are too severe for experimental realization. To
our excitement, owing to the tremendous progress made in cav-
ity optomechanics [13], such as the ground-state cooling of
macroscopic mechanical oscillators [14–18] and the realization
of strong optomechanical coupling [19–21], the optomechan-
ical system provides a powerful tool for achieving the squeezed
state of mechanical oscillators that are nearly macroscopic in
physical size [22].

In recent years, a host of methods has been proposed to
achieve mechanical squeezing based on the cavity optomechan-
ical system, such as periodic modulation of the external driving
amplitude [23–26], parametric driving of the mechanical oscil-
lator [27], quantum reservoir engineering [28,29], squeezed
light driving and squeezing transfer [30], quadratic optome-
chanical coupling [31,32], dissipative optomechanical coupling
[33–35], Duffing nonlinearity [36], and parametric resonance
induced by non-Markovian reservoir [37]. As we all know, if
the quantum fluctuation of one of the mechanical quadratures
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can be suppressed below one-half of the standard quantum
limit, the squeezing of the mechanical oscillator beats the 3 dB
limit, which has been the feature of achieving strong mechani-
cal squeezing. However, in order to surpass this 3 dB limit,
some schemes strongly depend on more complex technologies,
including quantum measurements [38–40], quantum feedback
[41], both linear and quadratic optomechanical couplings,
and squeezed vacuum injection [42], etc. Additionally, the
above-mentioned generation schemes of mechanical squeezing
[23–34,36,37] focused mainly on the sole squeezing manipu-
lation method. Thus, a novel idea is whether we can make use
of the joint effect between two relatively simple squeezing
methods to construct strong mechanical squeezing. If so, how
the respective squeezing will affect the total squeezing effect
needs investigation.

In this paper, we study the engineering of strong mechanical
squeezing via the joint effect between Duffing nonlinearity and
parametric pump driving. We find that, by properly choosing
the parametric pump frequency, the squeezing of the cavity
mode created by an optical parametric amplifier (OPA) can
be further transferred into the squeezed mechanical mode in-
duced by the Duffing nonlinearity. Based on this kind of joint
squeezing effect, the beyond 3 dB strong mechanical squeezing
can be easily achieved from two different below 3 dB squeezing
components without the need of any extra technologies, such as
quantum measurement or quantum feedback. We numerically
and analytically show that, in the case of an ideal mechanical
bath, the joint squeezing effect between Duffing nonlinearity
and parametric pump driving just is the superposition of these
two respective independent squeezing effects. The joint
mechanical squeezing has significantly strong robustness against
the mechanical thermal noise. Moreover, compared with pre-
vious mechanical squeezing detection schemes [36,37], there
is no necessity to introduce an additional ancillary cavity mode
in the present scheme, and the joint mechanical squeezing effect
can be directly measured by homodyning the output field of the
cavity. The idea of joint effect provides a new approach to
generate strong mechanical squeezing and can also be general-
ized to realize other quantum effects, for example, enhancement
of optomechanical entanglement via periodicmodulations of the
driving amplitude and the input laser intensity [43], optome-
chanical cooling beyond the quantum back-action limit with
the frequency modulations of the cavity mode and the mechani-
cal mode [44], and the realization of the ultrastrong Jaynes–
Cummings mode by modulating the resonance frequencies of
the two-level system and the bosonic mode [45].

The rest of this paper is structured as follows. In Section 2,
we describe the physical mode and obtain the linearized system
Hamiltonian. In Section 3, we analyze the stability of the sys-
tem and calculate the steady-state quantum fluctuation spectra
of the mechanical mode. In Section 4, we discuss in detail the
joint effect between Duffing nonlinearity and parametric pump
driving in the construction of strong mechanical squeezing
from the points of squeezing transfer, Wigner function, and
analytical result, respectively. In Section 5, we show how the
joint squeezing effect can be measured by homodyning the out-
put field. In Section 6, we discuss experimental feasibility.
Finally, we present our conclusions in Section 7.

2. MODEL AND HAMILTONIAN

We consider a degenerate OPA inside an optomechanical sys-
tem formed by a fixed mirror and a moving mirror, as depicted
in Fig. 1, in which the movable mirror is coupled to a single-
mode cavity field (with frequency ωc and decay rate κ) driven
by an external laser field with amplitude εL and frequency ωL.
The fixed mirror is partially transmissive, while the movable
mirror is completely reflective and is modeled as a quantum-
mechanical oscillator with effective mass m, resonance fre-
quency ωm, damping rate γm, and Duffing nonlinearity ampli-
tude η. As pointed out in Ref. [46], the mechanical nonlinearity
can be generated by coupling the mechanical oscillator to an
auxiliary system. It is shown that the strong nonlinearity of
η � 10−4ωm can be obtained when the mechanical mode is
coupled to a qubit [36]. Meanwhile, in the degenerate OPA,
we assume that a pump field at frequency 2�ωL � ω̃ 0

m� interacts
with a second-order nonlinear optical crystal, and it generates
downconverted light at frequency ωL � ω̃ 0

m, the specific form
of ω̃ 0

m of which will be given later. Moreover, the mechanical
oscillator is also contacted with a thermal environment in equi-
librium at temperature T , which induces a thermal Langevin
force exerting on the mechanical oscillator. The Hamiltonian
of the system in the rotating frame with respect to laser fre-
quency ωL is written as (ℏ � 1)

H � δcc†c � ωmb†b�
η

2
�b� b†�4 − g0c†c�b� b†�

� εL�c† � c� � iG�eiθc†2e−2iω̃ 0
mt − e−iθc2e2iω̃ 0

mt�: (1)

Here the first term is the energy of the cavity field, where
δc � ωc − ωL is the cavity detuning with respect to the fre-
quency of the input laser, and c (c†) refers to the annihilation
(creation) operator of the cavity field satisfying the commuta-
tion relation �c, c†� � 1. The second and third terms corre-
spond to the energy of the mechanical oscillator, which
contain a Duffing nonlinearity term, and b (b†) is the annihi-
lation (creation) operator of the mechanical mode, satisfying
�b, b†� � 1. The fourth and fifth terms describe the interactions
of the cavity field with the mechanical mode and the input la-
ser, respectively, where g0 is the single-photon optomechanical
coupling strength. The last term represents the coupling be-
tween the cavity field and the OPA, where the gain of the

Fig. 1. Schematic diagram of the considered optomechanical sys-
tem. An OPA is placed inside the cavity driven by an external laser
field and is pumped by a parametric driving field. Here the movable
mirror is coupled to the cavity field via the radiation-pressure inter-
action and is treated as a quantum-mechanical oscillator with a
Duffing nonlinearity.
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OPA is G, related to the power of the pump driving the OPA,
and the phase of the pump driving the OPA is θ.

Here we are interested in the strong-driving regime so that
both the cavity and the mechanical modes will be in the large
steady-state amplitudes. Let α and β be the steady-state ampli-
tude of the cavity mode and the mechanical mode under the
strong-driving regime, respectively. We can obtain the follow-
ing set of equations for the steady-state amplitudes:

�−i�δc − 2g0β� − κ�α − iεL � 0,

16ηβ3 � �12η� ωm�β − g0jαj2 � 0, (2)

where the G-dependent and γm-dependent terms have been
omitted under the parameter regimes of G ≪ ωm and γm ≪ κ.

Using the Heisenberg equations of motion and considering
the corresponding damping and noise terms, and further
applying the standard linearization procedure, we obtain the
linearized quantum Langevin equations (QLEs),

_b � −iω̃mb − 2iΛb† � ig�c � c†� − γm
2
b� ffiffiffiffiffi

γm
p

bin�t�,
_c � −iΔc c � ig�b� b†� � 2Geiθc†e−2iω̃ 0

mt

− κc �
ffiffiffiffiffi
2κ

p
cin�t�, (3)

where

Δc � δc − 2g0β, ω̃m � ωm � 2Λ,

Λ � 3η�4β2 � 1�, g � g0jαj: (4)

Here bin is the boson annihilation operator of the thermal noise
with zero mean value whose nonzero correlation functions are

hb†in�t�bin�t 0�i � nthmδ�t − t 0�,
hbin�t�b†in�t 0�i � �nthm � 1�δ�t − t 0�,

(5)

where nthm � �exp�ℏωm∕kBT � − 1�−1 is the mean bath phonon
number, and kB is the Boltzmann constant. Moreover, cin is the
zero-mean cavity vacuum input noise operator with correlation
functions

hc†in�t�cin�t 0�i � nthc δ�t − t 0�,
hcin�t�c†in�t 0�i � �nthc � 1�δ�t − t 0�, (6)

where nthc � �exp�ℏωc∕kBT � − 1�−1 is the mean thermal exci-
tation number of the optical mode.

The corresponding linearized system Hamiltonian can be
written as

H eff � ω̃mb†b� Δcc†c � Λ�b2 � b†2� − g�b� b†��c � c†�
� iG�eiθc†2e−2iω̃ 0

mt − e−iθc2e2iω̃ 0
mt�: (7)

We notice that in Eq. (7), the mechanical mode and cavity
mode will be simultaneously squeezed under the action of
Duffing nonlinearity and parametric pump driving, respec-
tively. Then, a fantastically interesting problem is whether
the squeezing of the cavity mode can be further transferred into
the squeezed mechanical mode by properly choosing ω̃ 0

m. If so,
as shown in Fig. 2, the strong mechanical squeezing is achiev-
able based on the joint effect between Duffing nonlinearity and
parametric pump driving.

3. STEADY-STATE QUANTUM FLUCTUATION
SPECTRA OF THE MECHANICAL MODE

If we apply the squeezing transformation S�r� �
exp�r

2
�b2 − b†2�� with squeezing parameter

r � 1

4
ln

�
1� 4Λ

ωm

�
(8)

to the linearized Hamiltonian in Eq. (7), the system
Hamiltonian can be transformed to be

H 0
eff � S†�r�H effS�r�

� ω̃ 0
mb†b� Δcc†c − g 0�b� b†��c � c†�

� iG�eiθc†2e−2iω̃ 0
mt − e−iθc2e2iω̃ 0

mt�, (9)

where

ω̃ 0
m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m � 4ωmΛ

p
, g 0 � g

�
1� 4Λ

ωm

�
−14
: (10)

In the interaction picture with respect to the free parts
ω̃ 0
mb†b� Δcc†c, H 0

eff is further transformed to

H 0 0
eff � −g 0�e−i�Δc�ω̃ 0

m�tbc � e−i�Δc−ω̃
0
m�tb†c

� ei�Δc−ω̃
0
m�t c†b� ei�Δc�ω̃ 0

m�t c†b†�
� iG�eiθc†2e2i�Δc−ω̃

0
m�t − e−iθc2e−2i�Δc−ω̃

0
m�t �: (11)

We assume that ω̃ 0
m � Δc and ω̃ 0

m ≫ g 0 are satisfied. Under
these parameter regimes, the rotating wave approximation can
be made so that the fast oscillating terms e�2iω̃ 0

mt in Eq. (11) can
be safely ignored. Thus, H 0 0

eff can be simplified as

H 0 0
eff � −g 0�b†c � c†b� � iG�eiθc†2 − e−iθc2�: (12)

Obviously, the effective optomechanical interaction between
the cavity mode and mechanical mode is a beam splitter inter-
action in the squeezing transformation frame. Therefore, the
squeezing transfer from the squeezed cavity mode to the
squeezed mechanical mode is possible.

A. Stability of the System
In this subsection, we begin to study the stability of the system
by exploiting the Routh–Hurwitz criterion [47]. In the squeez-
ing transformation frame, we obtain the linearized QLEs for
the mechanical and cavity modes,

cavity mode

squeezed cavity mode

mechanical mode

squeezed mechanical mode

joint effect

parametric pump driving Duffing nonlinearity

transfer

strong mechanical squeezing

Fig. 2. Sketch of the physical processes of the joint effect between
Duffing nonlinearity and parametric pump driving in construction of
strong mechanical squeezing.
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_b � ig 0c −
γm
2
b� ffiffiffiffiffi

γm
p

bin�t�,

_c � ig 0b� 2Geiθc† − κc �
ffiffiffiffiffi
2κ

p
cin�t�: (13)

Introducing the position and momentum quadratures for the
mechanical mode and the thermal noise,

δQ � �b� b†�∕
ffiffiffi
2

p
, δP � �b − b†�∕

ffiffiffi
2

p
i,

Q in � �bin � b†in�∕
ffiffiffi
2

p
, Pin � �bin − b†in�∕

ffiffiffi
2

p
i, (14)

and the amplitude and phase quadratures for the cavity mode
and input quantum noise,

δX � �c � c†�∕
ffiffiffi
2

p
, δY � �c − c†�∕

ffiffiffi
2

p
i,

X in � �c in � c†in�∕
ffiffiffi
2

p
, Y in � �c in − c†in�∕

ffiffiffi
2

p
i, (15)

the linearized QLEs for the mechanical and cavity modes in
Eq. (13) can be written in a compact form as

_f �t� � Mf �t� � n�t�, (16)

where f �t� and n�t� are the column vectors for all quadratures
and noises, respectively,

f �t� � �δQ , δP, δX , δY �T ,
n�t� � � ffiffiffiffiffi

γm
p

Q in,
ffiffiffiffiffi
γm

p
P in,

ffiffiffiffiffi
2κ

p
X in,

ffiffiffiffiffi
2κ

p
Y in�T , (17)

and M is a 4 × 4 time-independent matrix,

M �

2
666664

− γm
2 0 0 −g 0

0 − γm
2 g 0 0

0 −g 0 2G cos θ − κ 2G sin θ

g 0 0 2G sin θ −�2G cos θ� κ�

3
777775
: (18)

The stability is determined by the eigenvalues of the matrixM ,
and the following three nontrivial stability conditions on the
system parameters can be derived by requiring that all of
the eigenvalues have negative real parts,

2κ�κ2 − 4G2� � 1

4
γ3m � �2κ � γm��g 02 � 2κγm� > 0,

γ2m�κ2 − 4G2� � 4g 02�g 02 � κγm� > 0,

2κγm�κ2 − 4G2�2 � ��2κ� γm�2g 02 � �4κ � γm�κγ2m�

× �κ2 − 4G2� � κγm�2κ � γm�
�
κγ2m �

�
2κ � 3

2
γm

�
g 02

�

� γ3m
4

�
κγ2m
2

� �2κ � γm�g 02
�
> 0: (19)

Clearly, only if G < 0.5κ, can all stability conditions above
always be satisfied. On the other hand, due to the fact that
the similarity transformation in Eq. (9) does not change the
eigenvalues of a matrix, G < 0.5κ can still ensure the system
is stable in the original frame (before the squeezing transforma-
tion). We also note that the stability is independent of the
phase θ.

B. Quantum Fluctuation Spectra of the Mechanical
Mode
To investigate the joint effect between Duffing nonlinearity
and parametric pump driving in engineering of strong

mechanical squeezing, it is very necessary to obtain the quan-
tum fluctuation spectra of the mechanical mode.

Taking the Fourier transform of both sides in Eq. (16) by
using f �t� � 1

2π

R
∞
−∞ f �ω�e−iωtdω, the position and momen-

tum fluctuations of the mechanical mode in the frequency do-
main are obtained,

δQ�ω� � A1�ω�Q in�ω� � B1�ω�Pin�ω�
� E1�ω�X in�ω� � F 1�ω�Y in�ω�,

δP�ω� � A2�ω�Q in�ω� � B2�ω�Pin�ω�
� E2�ω�X in�ω� � F 2�ω�Y in�ω�, (20)

where

A1�ω� �
ffiffiffiffiffi
γm

p
d �ω� f�u�ω�

2 − 4G2�ν�ω�� g 02u�ω�� 2Gg 02 cos θg,

B1�ω� �
ffiffiffiffiffi
γm

p
d �ω�2Gg 02 sin θ,

E1�ω� � −

ffiffiffiffiffi
2κ

p

d �ω�2Gg 0 sin θν�ω�,

F 1�ω� �
ffiffiffiffiffi
2κ

p

d �ω� g
0f�2G cos θ − u�ω��ν�ω� − g 02g,

A2�ω� �
ffiffiffiffiffi
γm

p
d �ω�2Gg 02 sin θ,

B2�ω� �
ffiffiffiffiffi
γm

p
d �ω� f�u�ω�ν�ω�� g 02�u�ω�

− 4G2ν�ω� − 2Gg 02 cos θg,

E2�ω� �
ffiffiffiffiffi
2κ

p

d �ω� g
0f�2G cos θ� u�ω��ν�ω�� g 02g,

F 2�ω� �
ffiffiffiffiffi
2κ

p

d �ω�2Gg 0 sin θν�ω�, (21)

with u�ω� � κ − iω, ν�ω� � γm
2 − iω, and d �ω� �

�u�ω�ν�ω� � g 02�2 − 4G2ν�ω�2. In Eq. (20), the first two terms
in δQ�ω� and δP�ω� originate from the thermal noise, while
the last two terms are from the vacuum radiation input noise.
In the absence of the optomechanical coupling between
the cavity mode and mechanical mode (g0 � 0), the mechani-
cal oscillator will make quantum Brownian motion due to
the coupling to the environment, δQ�ω� �

ffiffiffiffi
γm

p
γm
2 −iω

Q in and

δP�ω� �
ffiffiffiffi
γm

p
γm
2 −iω

Pin.

The spectra of the position and momentum fluctuations of
the mechanical mode are defined by

2πSZ �ω�δ�ω�Ω�

� 1

2
�hδZ �ω�δZ �Ω�i � hδZ �Ω�δZ �ω��, Z � Q , P: (22)

Resorting to the noise sources correlation functions in the
frequency domain,
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hQ in�ω�Q in�Ω�i�hP in�ω�Pin�Ω�i�
�
nthm �1

2

�
2πδ�ω�Ω�,

hQ in�ω�Pin�Ω�i�−hPin�ω�Q in�Ω�i� iπδ�ω�Ω�,

hX in�ω�X in�Ω�i�hY in�ω�Y in�Ω�i�
�
nthc �1

2

�
2πδ�ω�Ω�,

hX in�ω�Y in�Ω�i�−hY in�ω�X in�Ω�i� iπδ�ω�Ω�, (23)

we can obtain the spectra of the position and momentum fluc-
tuations of the mechanical mode in the squeezing transforma-
tion frame,

SQ�ω�� �A1�ω�A1�−ω��B1�ω�B1�−ω��
�
nthm �1

2

�

��E1�ω�E1�−ω��F 1�ω�F 1�−ω��
�
nthc �1

2

�
,

SP�ω�� �A2�ω�A2�−ω��B2�ω�B2�−ω��
�
nthm �1

2

�

��E2�ω�E2�−ω��F 2�ω�F 2�−ω��
�
nthc �1

2

�
: (24)

In SZ �ω��Z � Q , P�, the first term is the contribution of the
thermal noise, while the second term is from the input vacuum
noise contribution. The steady-state mean square fluctuations
of the mechanical mode hδQ2i and hδP2i corresponding to the
position and momentum, respectively, in the original frame are
obtained by

hδQ2i � e−2r

2π

Z
∞

−∞
SQ�ω�dω, hδP2i � e2r

2π

Z
∞

−∞
SP�ω�dω:

(25)

In the absence of optomechanical coupling, we can calculate
hδQ2i � e−2r�nthm � 1

2� and hδP2i � e2r�nthm � 1
2�. In this case,

the steady-state amplitude of the mechanical mode is suffi-
ciently small so that r ≃ 0. Therefore, hδQ2i � hδP2i �
nthm � 1

2. For T � 0, i.e., the mechanical oscillator is in the
ground state, hδQ2i � hδP2i � 1

2. Because of �Q ,P� � i, ac-
cording to the Heisenberg uncertainty principle, if either hδQ2i
or hδP2i is below 1∕2, the mechanical mode will be squeezed.
The degree of the squeezing of the mechanical mode can
also be expressed in terms of −10 log10

hδZ 2i
hδZ 2ivac (Z � Q , P) with

hδQ2ivac � hδP2ivac � 1
2 being the position and momentum

variances of the ground state.

4. STRONG MECHANICAL SQUEEZING
INDUCED BY DUFFING NONLINEARITY AND
PARAMETRIC PUMP DRIVING

A. Squeezing Transfer from Squeezed Cavity Mode
to Mechanical Mode without Duffing Nonlinearity
When there is no optomechanical interaction (g0 � 0), the
amplitude and phase fluctuations of the cavity mode in the
frequency domain can be obtained from Eq. (16),

δX �ω� � E3�ω�X in�ω� � F 3�ω�Y in�ω�,
δY �ω� � E4�ω�X in�ω� � F 4�ω�Y in�ω�, (26)

where

E3�ω� � −

ffiffiffiffiffi
2κ

p

4G2 − u�ω�2 �u�ω� � 2G cos θ�,

F 3�ω� � −

ffiffiffiffiffi
2κ

p

4G2 − u�ω�2 2G sin θ,

E4�ω� � −

ffiffiffiffiffi
2κ

p

4G2 − u�ω�2 2G sin θ,

F 4�ω� � −

ffiffiffiffiffi
2κ

p

4G2 − u�ω�2 �u�ω� − 2G cos θ�: (27)

In the absence of the OPA, i.e., G � 0, δX �ω� and δY �ω�
can be further simplified as δX �ω� �

ffiffiffiffi
2κ

p
κ−iωX in�ω� and

δY �ω� �
ffiffiffiffi
2κ

p
κ−iωY in�ω�. Taking the similar method with

Eq. (24), we obtain the spectra of the amplitude and phase fluc-
tuations of the cavity mode,

SX �ω� � �E3�ω�E3�−ω� � F 3�ω�F 3�−ω��
�
nthc � 1

2

�
,

SY �ω� � �E4�ω�E4�−ω� � F 4�ω�F 4�−ω��
�
nthc � 1

2

�
: (28)

When there is no OPA in the cavity, the spectra of the ampli-
tude and phase fluctuations of the cavity mode are
SX �ω� � SY �ω� � 2κ

κ2�ω2 �nthc � 1
2�, which are the Lorentzian

spectra with full width 2κ at half-maximum, and their peaks
are located at ω � 0. The steady-state mean square fluctuations
of the cavity mode hδX 2i and hδY 2i corresponding to the
amplitude and phase, respectively, are obtained:

hδO2i � 1

2π

Z
∞

−∞
SO�ω�dω, O � X ,Y : (29)

In the case ofG � 0, we can derive hδX 2i � hδY 2i � nthc � 1
2.

If the cavity mode is in the vacuum state, hδX 2i � hδY 2i � 1
2
.

Similarly, due to �X ,Y � � i, if hδX 2i or hδY 2i is smaller than 1
2

(larger than 0 dB), the cavity mode is in a squeezed state.
Through numerically integrating Eq. (29), the phase mean

square fluctuation hδY 2i of the cavity mode as a function of the
parametric gain G with different parametric phases θ is shown
in Fig. 3(a). We note that, in the absence of the OPA,
hδY 2i � 0 dB; hence, the phase fluctuation of the cavity mode
is not squeezed. However, once the OPA is introduced,
hδY 2i > 0 dB appears, except θ � 1

2 π. Therefore, the cavity
mode phase squeezing is achievable when an OPA is inside
the cavity. The optimal squeezing occurs at θ � 0, and it be-
comes stronger as the parametric gain G increases. Hereafter,
we will fix the parametric phase θ � 0 to investigate the joint
effect between Duffing nonlinearity and parametric pump
driving in engineering of strong mechanical squeezing.

In the case of η � 0, taking the same method to numerically
solve Eq. (25), we plot the mechanical mode position mean
square fluctuation hδQ2i as a function of the parametric gain
G with different parametric phases θ in Fig. 3(b). Similarly, it is
seen that hδQ2i � 0 dB in the absence of the OPA, so there is
no squeezing in the position fluctuation of the mechanical
mode. In the presence of the OPA, hδQ2i can be larger than
0 dB, except θ � 1

2 π. From Figs. 3(a) and 3(b), we find that the
phase fluctuation of the cavity mode is equal to the position
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fluctuation of the mechanical mode for a fixed parameter set
�G, θ�. As a consequence, the squeezing of the cavity mode
is completely transferred into the mechanical mode. This is be-
cause in the case of η � 0, the squeezing transformation S�r�
and the condition ω̃ 0

m � Δc are reduced to an identity operator
and the red-detuned driving regime ωm � Δc , respectively.
The effective optomechanical interaction between the cavity
mode and the mechanical mode is a beam splitter-type inter-
action.

B. Strong Mechanical Squeezing Engineering Based
on Joint Effect
In this subsection, we show the joint effect between Duffing
nonlinearity and parametric pump driving in engineering of
strong mechanical squeezing.

To this end, we plot the mechanical mode position mean
square fluctuation hδQ2i as a function of the parametric gain
G without Duffing nonlinearity and with Duffing nonlinearity
of η � 10−5ωm, respectively, in Fig. 4. From Fig. 4, it is shown
that, due to the limitation of the system stability (G < 0.5κ),
the position squeezing of the mechanical mode cannot beat the
3 dB limit when there is only the parametric function (as the
blue line shows). Likewise, when the weak nonlinearity of
η � 10−5ωm is solely applied, the position squeezing cannot
get beyond the 3 dB limit yet (as point C shows). However,

once the parametric function and the weak nonlinearity simul-
taneously exist, the position squeezing of the mechanical mode
can surpass the 3 dB limit (as the red line above the shadowed
blue region shows). Therefore, based on the joint effect be-
tween Duffing nonlinearity and parametric pumping driving,
the strong position squeezing that goes beyond the 3 dB limit
can be engineered, but this cannot be achieved by only using
either of these two manipulation methods.

Typically, in Fig. 4, we take four different points A, B, C ,
and D as an explicit example. The parameter sets �G, η� cor-
responding to the points A, B, C , and D are �0, 0�, �0.4κ, 0�,
�0, 10−5ωm�, and �0.4κ, 10−5ωm�, respectively, which means
four different cases: neither the Duffing nonlinearity and para-
metric pumping driving; only parametric pumping driving;
only Duffing nonlinearity; and both of them. As shown in
Fig. 4, the degrees of the squeezing ζ for A, B, C , and D are
ζA � 0 dB, ζB � 2.5527 dB, ζC � 2.3376 dB, and ζD �
4.8903 dB, respectively. Obviously, ζD > 3 dB > ζB�C�,
which explicitly demonstrates that the beyond 3 dB strong
mechanical squeezing can easily be achieved from the joint
effect of two different below 3 dB squeezing components
induced by Duffing nonlinearity and parametric pump driving,
respectively. In fact, ζD � ζB � ζC . In next subsection, we will
prove this analytically.

Intuitively, from the viewpoint of the Wigner function, this
kind of joint squeezing effect between Duffing nonlinearity and
parametric pump driving can be shown more clearly in the
phase space. Since the thermal noise bin and the vacuum input
noise c in are the zero-mean Gaussian noises, and the dynamics
of the fluctuation operators b and c is linearized, the evolved
state of the system will remain the Gaussian nature at all times
[48]. Hence, the dynamics of the system can be completely
characterized by a 4 × 4 covariance matrix (CM) σ, whose
elements are defined by

σij � hf i�t�f j�t� � f j�t�f i�t�i∕2, i, j � 1, 2, 3, 4:

(30)

0.0 0.1 0.2 0.3 0.4 0.5
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5
(a)

0.0 0.1 0.2 0.3 0.4 0.5
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5
(b)

Fig. 3. Dependence of (a) the cavity mode phase mean square fluc-
tuation hδY 2i and (b) the mechanical mode position mean square fluc-
tuation hδQ2i on the parametric gain G for the parametric phase
θ ∈ �0, 1

2 π�. The horizontal dashed line represents the variance of the
vacuum state. The frequency of the mechanical mode ωm∕�2π� �
2.5 × 106 Hz. Other parameters are ωc � 2.5 × 108ωm, γm �
10−6ωm, κ � 0.1ωm, g0 � 10−4ωm, P � 0.1 mW, nthm � nthc � 0,
and εL �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pκ∕�ℏωc�

p
.
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X=0
Y=0

B

X=0.40
Y=2.5527

C
X=0
Y=2.3376

D

X=0.40
Y=4.8903

Fig. 4. Dependence of the mechanical mode position mean square
fluctuation hδQ2i on the parametric gain G in the cases of η � 0 and
η � 10−5ωm. The parameter sets �G, η� corresponding to the points
A, B, C , andD are �0, 0�, �0.4κ, 0�, �0, 10−5ωm�, and �0.4κ, 10−5ωm�,
respectively. Here we have set θ � 0, and other parameters are the
same as in Fig. 3. The shadowed blue bottom region corresponds
to squeezing below the 3 dB limit.
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Starting from the dynamical equation [Eq. (16)] for the quad-
rature fluctuation operators f �t�, we can derive the equation of
motion for the CM σ [26],

_σ�t� � Mσ�t� � σ�t�MT � D, (31)

whereMT represents the transpose of the matrixM , and D is a
diffusion matrix whose elements are

Dij � hni�t�nj�t� � nj�t�ni�t�i∕2: (32)

According to the noise correlation functions, it is found that D
is a diagonal matrix D � Diag�γm2 �2nthm � 1�, γm

2 �2nthm � 1�,
κ�2nthc � 1�, κ�2nthc � 1��. Note that Eq. (31) is an inhomo-
geneous first-order differential equation with 10 elements,
which can be numerically solved with the initial condition
σ�0� � Diag�e2r�nthm � 1

2�, e−2r�nthm � 1
2�, nthc � 1

2 , n
th
c � 1

2�.
When the system reaches steady state, the equation of

motion for the CM σ [Eq. (31)] will be reduced as the
Lyapunov equation,

Mσ � σMT � −D: (33)

If the 2 × 2 CM of the mechanical mode in the squeezing trans-
formation frame σb can be written as

σb �
�
σb11 σb12
σb21 σb22

�
, (34)

the CM of the mechanical mode in the original frame is

Vb �
�
e−2rσb11 σb12
σb21 e2rσb22

�
: (35)

In this case, the corresponding Wigner function of the
mechanical mode can be written as [48]

W �R� � exp�− 1
2
RTV−1

b R�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det�Vb�

p , (36)

where R stands for the two-dimensional vector of CM
operators R � �Q , P�T .

In Fig. 5, we plot the Wigner functions in the phase space
for the mechanical mode at some specific points in Fig. 4. Here
we should point out that we have set the first moment of the
mechanical mode to zero for simplicity. This is because the first
moment could be arbitrarily adjusted by following a local
unitary transformation, but it cannot affect any information-
related properties [49,50]. It is shown in Fig. 5(a) that the
Wigner function neither stretches nor contracts along any axis.
It stems from the fact that at the point A in Fig. 4, there is
neither parametric function nor Duffing nonlinearity, so the
mechanical mode cannot be squeezed. As shown in Figs. 5(b)
and 5(c), the Wigner function stretches along the vertical axis
and contracts along the horizontal axis as a result of the
Heisenberg uncertainty, which represents the squeezing effect
of the position fluctuation under the sole action of parametric
function (point B in Fig. 4) or Duffing nonlinearity (point C
in Fig. 4), respectively. Obviously, these features of stretch and
contraction of the Wigner function become more prominent
in Fig. 5(d), which clearly signify the joint squeezing effect
between Duffing nonlinearity and parametric pump driving
at point D in Fig. 4.

C. Understanding the Joint Effect from the
Analytical Expression of the Mean Square
Fluctuation
In this subsection, we provide the analytical approach to further
understand the joint squeezing effect between Duffing nonlin-
earity and parametric pump driving.

Under the weak optomechanical coupling regime (g 0 < κ),
the decay of the cavity mode is faster than that for the effective
optomechanical coupling between the cavity mode and the
mechanical mode, so that the cavity mode adiabatically inter-
acts with the mechanical mode. Thus,

c � 1

κ2 − 4G2 �iκg 0b − 2iGg 0eiθb†

� 2Geiθ
ffiffiffiffiffi
2κ

p
c†in�t� � κ

ffiffiffiffiffi
2κ

p
cin�t��: (37)

Substituting the above equation into Eq. (13), we have

_b � −
κg 02

κ2 − 4G2 b�
2Gg 02eiθ

κ2 − 4G2 b
† � ffiffiffiffiffi

γm
p

bin�t�

� ig 0
ffiffiffiffiffi
2κ

p

κ2 − 4G2 �2Geiθc†in�t� � κcin�t��, (38)

where the γm-dependent term in the coefficient of b has been
ignored. The dynamical equation for the position fluctuation
δQ can be derived:

δ _Q � −
g 02

κ � 2G
δQ � F 1�t� � F 2�t�, (39)

where

F 1�t� � −
ig 0

ffiffiffi
κ

p
κ � 2G

�c†in�t� − cin�t��,

F 2�t� �
ffiffiffiffiffi
γm
2

r
�b†in�t� � bin�t��, (40)

are the effective Langevin forces, and their correlation func-
tions are

Fig. 5. Wigner function in the phase space for the mechanical
mode. (a), (b), (c), and (d) correspond to the points A, B, C , and
D in Fig. 4, respectively. The parameters are the same as in Fig. 4.
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hF 1�t1�F 1�t2�i �
g 02κ

�κ� 2G�2 �2n
th
c � 1�δ�t1 − t2�,

hF 2�t1�F 2�t2�i �
γm
2
�2nthm � 1�δ�t1 − t2�: (41)

From Eqs. (39) and (41), we can obtain the dynamical equation
for the position mean square fluctuation hδQ2�t�i:

dhδQ2�t�i
dt

� −
2g 02

κ � 2G
hδQ2�t�i � g 02κ

�κ � 2G�2 �2n
th
c � 1�

� γm
2
�2nthm � 1�: (42)

Therefore, the analytical expression for the steady-state position
mean square fluctuation hδQ2i in the original frame is

hδQ2is � e−2r
�

κ

2�κ � 2G� �2n
th
c � 1�

� γm�κ � 2G�
4g 02

�2nthm � 1�
�
: (43)

If the degree of the squeezing of the steady-state position fluc-
tuation is expressed in decibel units,

ζ � −10 log10
hδQ2is
hδQ2ivac

� −10 log10e
−2r − 10 log10

�
κ

2�κ � 2G�

� γm�κ � 2G�
4g 02

�
− 10 log102, (44)

we have set nthc � nthm � 0. Obviously, in Eq. (44), the first
term is from the η-dependent squeezing contribution, while
the second term is from the G-dependent squeezing contribu-
tion. The joint squeezing effect between Duffing nonlinearity
and parametric pump driving just is the superposition of each
kind of squeezing effect. This is the reason why ζD � ζB � ζC
in Fig. 4. To verify the validity of Eq. (44), the analytical sol-
ution is also shown in Fig. 6. It can be seen that it agrees well
with the exact numerical solution obtained by Eq. (25). In
Table 1, we give the sole (joint) squeezing result of the para-
metric pump driving and the Duffing nonlinearity when apply-
ing either (both) of these two different squeezing methods in
different parameter sets of �P,G, η�. It proves again that the
joint squeezing effect just corresponds to the superposition
of their sole squeezing result.

In order to further show the robustness of the joint
mechanical squeezing, we plot the mechanical mode position
mean square fluctuation hδQ2i as a function of the thermal
phonon number nthm in Fig. 7. We find that, even though
the thermal phonon number nthm is about 105, the mechanical
squeezing still can beat the 3 dB limit. It is also seen that the
position squeezing of the mechanical mode decreases with the
increase of the thermal phonon number nthm, which can be
explained by Eq. (43), where hδQ2i increases with the nthm ,
i.e., the decrease of the position squeezing.

5. MEASUREMENT OF THE JOINT
MECHANICAL SQUEEZING VIA OUTPUT FIELD

We now turn to discuss the mechanical squeezing measurement
resorting to the output field. According to the input-output
relation of the cavity field cout�t� �

ffiffiffiffiffi
2κ

p
c�t� − cin�t� [51],

we can obtain the quadrature fluctuation of the output field
in the frequency domain δZ out�ω��Z � X , Y �. Here we define
the quadrature fluctuation operator of the output field as

0.0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

Fig. 6. Mechanical mode position mean square fluctuation hδQ2i
obtained by the numerical solution in Eq. (25) and the analytical sol-
ution in Eq. (44), respectively, in the cases of η � 0 and η � 10−5ωm.
Other parameters are the same as in Fig. 4. The shadowed blue bottom
region corresponds to squeezing below the 3 dB limit.

Table 1. Applying Either (Both) of the Parametric Pump Driving and the Duffing Nonlinearity, the Sole (Joint) Squeezing
Result (in Units of Decibels) of These Two Different Squeezing Methods in Different Parameter Sets of �P ,G, η�a

Power
P �mW�

Parametric
Gain G∕κ

Nonlinearity
η∕ωm

Squeezing Effect
�G ≠ 0, η � 0�

Squeezing Effect
�G � 0, η ≠ 0� Superposition

Joint Squeezing Effect
�G ≠ 0, η ≠ 0�

0.1 0.30 10−5 2.0412 2.3376 4.3788 4.3788
0.1 0.30 10−4 2.0412 3.4081 5.4493 5.4492
0.5 0.35 10−5 2.3045 3.8333 6.1378 6.1378
0.5 0.35 10−4 2.3045 4.8904 7.1949 7.1948
1.0 0.40 10−5 2.5527 4.4718 7.0245 7.0245
1.0 0.40 10−4 2.5527 5.5188 8.0715 8.0715
2.0 0.45 10−5 2.7875 5.1042 7.8917 7.8917
2.0 0.45 10−4 2.7875 6.1419 8.9294 8.9294

aOther parameters are the same as in Fig. 3.
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δZ out�ω� �
1ffiffiffi
2

p �δcout�ω�e−iϕ � δcout�−ω�†eiϕ�, (45)

where ϕ is the measurement phase angle in the homodyne mea-
surement. When ϕ � 0, δZ out�ω� � δX out�ω�, which corre-
sponds to the amplitude fluctuation operator of the output
field. While ϕ � π

2, δZ out�ω� � δY out�ω�, which is the phase
fluctuation operator of the output field. δZ out�ω� can be
expanded in the following form:

δZ out�ω� � AZ �ω�Q in�ω� � BZ �ω�Pin�ω�
� EZ �ω�X in�ω� � FZ �ω�Y in�ω�, (46)

where

AZ �ω� � −
ffiffiffiffiffi
γm

p �cos ϕE1�ω� � sin ϕF 1�ω��,
BZ �ω� � −

ffiffiffiffiffi
γm

p �cos ϕE2�ω� � sin ϕF 2�ω��,
EZ �ω� � cos ϕH �ω� � sin ϕI�ω�,
FZ �ω� � cos ϕI�ω� � sin ϕR�ω�,

H �ω� � 2κ

d �ω� ν�ω�fg
02 � �u�ω� � 2G cos θ�ν�ω�g − 1,

R�ω� � 2κ

d �ω� ν�ω�fg
02 � �u�ω� − 2G cos θ�ν�ω�g − 1,

I�ω� � 4κ

d �ω�G sin θν�ω�2: (47)

We define the spectrum of the quadrature fluctuation δZ out�ω�
of the output field as

2πSZout�ω�δ�ω�Ω�

� 1

2
�hδZ out�ω�δZ out�Ω�i � hδZ out�Ω�δZ out�ω�i�: (48)

Using the correlations of the noise operators in the frequency
domain in Eq. (23), we obtain the spectrum of the quadrature
fluctuation δZ out�ω� of the output field,

SZout�ω� � �AZ �ω�AZ �−ω� � BZ �ω�BZ �−ω��
�
nthm � 1

2

�

� �EZ �ω�EZ �−ω� � FZ �ω�FZ �−ω��
�
nthc � 1

2

�
:

(49)

In Eq. (49), the first term originates from the thermal noise,
while the second term is from the vacuum input noise.

As discussed above, in this joint scheme, the two critical
elements to engineer the strong mechanical squeezing are, re-
spectively, parametric pump driving and mechanical Duffing
nonlinearity. If neither of these two elements is introduced into
optomechanical system (G � 0, η � 0) and there is no optome-
chanical coupling (g0 � 0), the mechanical mode cannot be
squeezed, and the spectra of the amplitude and phase fluctua-
tions of the output field are SX out�ω� � SY out�ω� � 1

2
, which

means that the output field is in a vacuum state. In the presence
of the optomechanical coupling (g0 ≠ 0), as shown in Fig. 8, we
give the contour plot of the detection spectrum SZout�ω�
of the quadrature fluctuation of the output field versus the fre-
quency ω and the measurement phase angle ϕ when G � 0.4κ
and η � 10−5ωm. Figure 8 clearly presents the region where the
detection spectrum SZout�ω� of the quadrature fluctuation
δZ out�ω� of the output field is squeezed, i.e., SZout�ω� < 1

2
. In

other words, once the parametric pump driving and mechanical
Duffing nonlinearity are applied to an optomechanical system to
engineer the strong mechanical squeezing, the spectrum
SZout�ω� of the quadrature fluctuation of the output field can
be turned into a squeezed state from the previous vacuum state
when the phase angle ϕ is appropriate. In this sense, the quad-
rature squeezing of the output field is a vital signature of the
mechanical squeezing constructed by the joint effect between
parametric pump driving and Duffing nonlinearity. Therefore,
the joint effect-induced strong mechanical squeezing can be di-
rectly detected by measuring the quadrature fluctuation of the
output field via the homodyne technology.
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Fig. 7. Dependence of the mechanical mode position mean square
fluctuation hδQ2i on the thermal phonon number nthm. Here we have
set κ � 0.2ωm, η � 10−4ωm, G � 0.49κ, θ � 0, and P � 10 mW.
Other parameters are the same as in Fig. 3. The shadowed blue bottom
region corresponds to squeezing below the 3 dB limit.

Fig. 8. Contour plot of the detection spectrum SZout�ω� of the
quadrature fluctuation of the output field versus the frequency ω
and the measurement phase angle ϕ when G � 0.4κ and
η � 10−5ωm. Other parameters are the same as in Fig. 4.
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6. ANALYSES OF THE EXPERIMENTAL
FEASIBILITY

Before concluding, we give some analyses of the experimental
feasibility of the present scheme. Based on the current exper-
imental setups of optomechanical systems, the order of magni-
tude for the system parameters extracted in our scheme is in the
reasonable range. The joint strong mechanical squeezing effect
in the present scheme results from two key factors, i.e., the
parametric pump driving and the Duffing nonlinearity. The
parametric pump driving of the OPA was one of the earliest
candidates to produce the squeezed cavity field in experiment
[11] and has been a mature technology so far, while the gen-
eration of Duffing nonlinearity has been discussed in detail in
Refs. [36,46]. Moreover, we also note that the very large non-
linearity can be induced for the librational mode in levitated
optomechanics [52]. In addition, the measurement of the
joint mechanical squeezing can be directly performed by the
homodyne detection technology using a local oscillator with
an appropriate phase.

7. CONCLUSIONS

In conclusion, we have in detail discussed that the beyond 3 dB
strong mechanical squeezing can be engineered successfully
based on the joint effect between Duffing nonlinearity and
parametric pump driving without the need of any extra tech-
nologies, such as quantum measurement or quantum feedback.
We find that the reasonable choice of the parametric pump
frequency can modulate the effective optomechanical interac-
tion between cavity mode and mechanical mode as a beam
splitter-type interaction in the squeezing transformation frame,
which means that the squeezing of the cavity mode created by
the OPA inside the optomechanical cavity can be further trans-
ferred into the squeezed mechanical mode induced by the
Duffing nonlinearity. Resorting to this kind of joint effect,
the 3 dB limit of strong mechanical squeezing can be easily
beaten, but the two respective independent squeezing compo-
nents are permitted below 3 dB. Particularly, we have numeri-
cally and analytically demonstrated that, as to the ideal
mechanical bath, the joint mechanical squeezing effect just is
the superposition of these two respective independent squeez-
ing components. Moreover, the mechanical squeezing con-
structed by the joint effect has fairly strong robustness
against mechanical thermal noise. Even though the thermal
phonon number is about 105, the mechanical squeezing still
can beat the 3 dB limit. We also show that the measurement
of the joint mechanical squeezing can be directly performed via
measuring the squeezing of the quadrature fluctuation of the
output field by the homodyne detection technology without
the need of introducing an additional ancillary cavity mode.
The joint idea provides an alternative approach to engineer
strong mechanical squeezing and can also be generalized to real-
ize other strong macroscopic quantum effects.
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