• Advanced Photonics
  • Vol. 4, Issue 5, 056003 (2022)
Xiang Xi1, Chang-Ling Zou2、3, Chun-Hua Dong2、3、*, and Xiankai Sun1、*
Author Affiliations
  • 1The Chinese University of Hong Kong, Department of Electronic Engineering, Shatin, Hong Kong SAR, China
  • 2University of Science and Technology of China, CAS Key Laboratory of Quantum Information, Hefei, China
  • 3University of Science and Technology of China, CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei, China
  • show less
    DOI: 10.1117/1.AP.4.5.056003 Cite this Article Set citation alerts
    Xiang Xi, Chang-Ling Zou, Chun-Hua Dong, Xiankai Sun. Highly tunable broadband coherent wavelength conversion with a fiber-based optomechanical system[J]. Advanced Photonics, 2022, 4(5): 056003 Copy Citation Text show less
    References

    [1] D. Budker, M. Romalis. Optical magnetometry. Nat. Phys., 3, 227-234(2007).

    [2] M.-G. Suh et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [3] H. J. Kimble. The quantum internet. Nature, 453, 1023-1030(2008).

    [4] Z. L. Newman et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [5] P. Del’Haye et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [6] Y. Zheng et al. Optically induced transparency in a micro-cavity. Light-Sci. Appl., 5, e16072(2016).

    [7] J. Lu et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W. Optica, 6, 1455-1460(2019).

    [8] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [9] A. H. Safavi-Naeini et al. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica, 6, 213-232(2019).

    [10] D. K. Armani et al. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [11] M. Li et al. Harnessing optical forces in integrated photonic circuits. Nature, 456, 480-484(2008).

    [12] B. J. Eggleton et al. Brillouin integrated photonics. Nat. Photonics, 13, 664-677(2019).

    [13] M. Eichenfield et al. Optomechanical crystals. Nature, 462, 78-82(2009).

    [14] J. T. Hill et al. Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun., 3, 1196(2012).

    [15] S. Weis et al. Optomechanically induced transparency. Science, 330, 1520-1523(2010).

    [16] J. Kim et al. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys., 11, 275-280(2015).

    [17] H. Shin et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun., 4, 1944(2013).

    [18] C.-H. Dong et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun., 6, 6193(2015).

    [19] H. Shin et al. Control of coherent information via on-chip photonic–phononic emitter–receivers. Nat. Commun., 6, 6427(2015).

    [20] C. Dong et al. Optomechanical dark mode. Science, 338, 1609-1613(2012).

    [21] R. W. Andrews et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys., 10, 321-326(2014).

    [22] A. H. Safavi-Naeini et al. Electromagnetically induced transparency and slow light with optomechanics. Nature, 472, 69-73(2011).

    [23] S. A. Tadesse, M. Li. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun., 5, 5402(2014).

    [24] K. C. Balram et al. Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits. Nat. Photonics, 10, 346-352(2016).

    [25] J. Bochmann et al. Nanomechanical coupling between microwave and optical photons. Nat. Phys., 9, 712-716(2013).

    [26] H. Li et al. Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz. Optica, 2, 826-831(2015).

    [27] Y.-D. Wang, A. A. Clerk. Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett., 108, 153603(2012).

    [28] K. Stannigel et al. Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett., 105, 220501(2010).

    [29] X. Xi et al. Experimental investigation of the angular symmetry of optical force in a solid dielectric. Optica, 8, 1435-1441(2021).

    [30] M. Sumetsky, Y. Dulashko, R. S. Windeler. Optical microbubble resonator. Opt. Lett., 35, 898-900(2010).

    [31] A. S. Biryukov, M. E. Sukharev, M. D. Evgenii. Excitation of sound waves upon propagation of laser pulses in optical fibres. Quantum Electron., 32, 765-775(2002).

    [32] M. Asano et al. Observation of optomechanical coupling in a microbottle resonator. Laser Photonics Rev., 10, 603-611(2016).

    [33] A. J. R. MacDonald et al. Optomechanics and thermometry of cryogenic silica microresonators. Phys. Rev. A, 93, 013836(2016).

    [34] X.-B. Yan. Optomechanically induced transparency and gain. Phys. Rev. A, 101, 043820(2020).

    [35] X.-B. Yan. Optomechanically induced optical responses with non-rotating wave approximation. J. Phys. B: At. Mol. Opt. Phys., 54, 035401(2021).

    [36] C. Dong et al. Optical wavelength conversion via optomechanical coupling in a silica resonator. Ann. Phys., 527, 100-106(2015).

    [37] Y. Tanaka, K. Ogusu. Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering. IEEE Photonics Technol. Lett., 10, 1769-1771(1998).

    [38] M. S. Kang et al. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nat. Phys., 5, 276-280(2009).

    [39] T. Umeki, O. Tadanaga, M. Asobe. Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide. IEEE J. Quantum Electron., 46, 1206-1213(2010).

    [40] Y. Antman et al. Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering. Optica, 3, 510-516(2016).

    [41] H. Hagai Diamandi, Y. London, A. Zadok. Opto-mechanical inter-core cross-talk in multi-core fibers. Optica, 4, 289-297(2017).

    [42] I. Brevik. Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor. Phys. Rep., 52, 133-201(1979).

    [43] P. W. Milonni, R. W. Boyd. Momentum of light in a dielectric medium. Adv. Opt. Photonics, 2, 519-553(2010).

    [44] M. Mansuripur. Trouble with the Lorentz law of force: incompatibility with special relativity and momentum conservation. Phys. Rev. Lett., 108, 193901(2012).

    [45] E. Dieulesaint, D. Royer. Elastic Waves in Solids I: Free and Guided Wave Propagation(2000).

    [46] P. T. Rakich, P. Davids, Z. Wang. Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces. Opt. Express, 18, 14439-14453(2010).

    [47] A. Yariv, P. Yeh. Optical Waves in Crystals(1984).

    [48] D. Marcuse. Gaussian approximation of the fundamental modes of graded-index fibers. J. Opt. Soc. Am., 68, 103-109(1978).

    [49] R. M. Shelby, M. D. Levenson, P. W. Bayer. Guided acoustic-wave Brillouin scattering. Phys. Rev. B, 31, 5244-5252(1985).

    [50] A. G. Krause et al. A high-resolution microchip optomechanical accelerometer. Nat. Photonics, 6, 768-772(2012).

    [51] C. W. Gardiner, P. Zolle. Quantum Noise(2004).

    Xiang Xi, Chang-Ling Zou, Chun-Hua Dong, Xiankai Sun. Highly tunable broadband coherent wavelength conversion with a fiber-based optomechanical system[J]. Advanced Photonics, 2022, 4(5): 056003
    Download Citation