• Infrared and Laser Engineering
  • Vol. 51, Issue 3, 20210360 (2022)
Sanyong Deng1, Song Yue2, Dongliang Zhang1, Zhaojun Liu1, Huiyu Li1, Yuan Liu1, Zichen Zhang2, and Lianqing Zhu1
Author Affiliations
  • 1Beijing Information Science and Technology University, Beijing 100192, China
  • 2Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
  • show less
    DOI: 10.3788/IRLA20210360 Cite this Article
    Sanyong Deng, Song Yue, Dongliang Zhang, Zhaojun Liu, Huiyu Li, Yuan Liu, Zichen Zhang, Lianqing Zhu. Design of solid-immersion infrared metalens[J]. Infrared and Laser Engineering, 2022, 51(3): 20210360 Copy Citation Text show less
    References

    [1] Xiumin Xie, Qiang Xu, Jian Chen, et al. Research progress on antimonide based type-Ⅱ superlattice mid-and long-infrared detectors. Laser Technology, 44, 688-694(2020).

    [2] Faran Chang, Zhi Jiang, Guowei Wang, et al. Progress of long wavelength IR FPA arrays based on antimonide compounds superlattice. Scientia Sinica Physica, Mechanica & Astronomica, 51, 28-45(2021).

    [3] P Manurkar, S Ramezani-Darvish, B M Nguyen, et al. High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices. Applied Physics Letters, 97, 1030(2010).

    [4] Guowei Wang, Yingqiang Xu, Zhichuan Niu. Development of high-performance novel low-dimensional structure antimonide infrared FPAs: Challenges and solutions. Scientia Sinica Physica, Mechanica & Astronomica, 44, 368-389(2014).

    [5] Antoni Rogalski. Infrared Terahertz Detects[M]. New Yk: CRC, 2019: 9697.

    [6] F Abolmaali, A Brettin, A Green, et al. Photonic jets for highly effificient mid-IR focal plane arrays with large angle-of-view. Optics Express, 25, 31174-31185(2017).

    [7] Jie Bai, Weida Hu, Nan Guo, et al. Performance optimization of insb infrared focal-plane arrays with diffractive microlenses. Journal of Electronic Materials, 43, 2795-2801(2014).

    [8] K W Allen, F Abolmaali, J M Duran, et al. Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres. Applied Physics Letters, 108, 342-473(2016).

    [9] S Zhang, A Soibel, S A Keo, et al. Solid-immersion metalenses for infrared focal plane arrays. Applied Physics Letters, 113, 111104(2018).

    [10] A Soibel, S A Keo, A Fisher, et al. High operating temperature nBn detector with monolithically integrated micro lens. Applied Physics Letters, 112, 041105(2018).

    [11] Qingbin Fan, Ting Xu. Research progress of imaging technologies based on electromagnetic metasurfaces. Acta Physica Sinica, 66, 114208(2017).

    [12] Xiong Li, Xiaoliang Ma, Xiangang Luo. Principles and applications of metasurfaces with phase modulation. Opto-Electronic Engineering, 44, 255-275(2017).

    [13] Kanwal Saima, Jing Wen, Binbin Yu, et al. High-efficiency, broadband, near diffffraction-limited, dielectric metalens in ultraviolet spectrum. Nanomaterials, 10, 490(2020).

    [14] Xianzhong Chen, Ming Chen, M Q Mehmood, et al. Longitudinal multifoci metalens for circularly polarized light. Advanced Optical Materials, 3, 1201-1206(2015).

    [15] Rao Fu, Zile Li, Guoxing Zheng, et al. Reconfifigurable step-zoom metalens without optical and mechanical compensations. Optics Express, 27, 12221-12230(2019).

    [16] Lingling Huang, Xianzhong Chen, H Mühlenbernd, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Letters, 12, 5750-5755(2012).

    [17] Lingling Huang, Xianzhong Chen, Benfeng Bai, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Science & Applications, 2, e70(2013).

    [18] Dongliang Tang, Changtao Wang, Zeyu Zhao, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser & Photonics Reviews, 9, 713-719(2015).

    [19] Haoran Ren, Xiangping Li, Qiming Zhang, et al. On-chip noninterference angular momentum multiplexing of broadband light. Science, 352, 805-809(2016).

    [20] Xiaohu Zhang, Jinjin Jin, Mingbo Pu, et al. Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes. Nanoscale, 9, 1409-1415(2017).

    [21] W Lei, S Kruk, H Tang, et al. Grayscale transparent metasurface holograms. Optica, 3, 1504-1505(2016).

    [22] S M Choudhury, D Wang, K Chaudhuri, et al. Material platforms for optical metasurfaces. Nanophotonics, 7, 959-987(2018).

    [23] Dongling Zhang, Yonglin Bai, Xiaoqiang Feng, et al. Analysis of the optical field of solid immersion lens by FDTD. Acta Photonica Sinica, 33, 884-888(2004).

    [24] Jianping Xie, Yonghua Lu, Pei Wang, et al. Analysis of near-field distribution of solid immersion lens by angular spectrum. Acta Optica Sinica, 22, 413-416(2002).

    [25] P R West, J L Stewart, A V Kildishev, et al. All-dielectric subwavelength metasurface focusing lens. Optics Express, 22, 26212-26221(2014).

    [26] Yue Shen, Xiangang Luo. Efficient bending and focusing of light beam with all-dielectric subwavelength structures. Optics Communications, 366, 174-178(2016).

    [27] Song Yue, Ran Wang, Maojing Hou, et al. Narrow-band perfect absorption utilizing higher-order surface plasmon resonance. Infrared and Laser Engineering, 49, 20190489(2020).

    [28] Q Fan, M Liu, C Yang, et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Applied Physics Letters, 113, 201104(2018).

    CLP Journals

    [1] Guoyan Wang, Rui Xu, Qiuyue Yu, Yonggang Wang, Xiaohui Meng. High precision manufacturing and testing of large aperture silicon-based space infrared lens (invited)[J]. Infrared and Laser Engineering, 2022, 51(9): 20220427

    Sanyong Deng, Song Yue, Dongliang Zhang, Zhaojun Liu, Huiyu Li, Yuan Liu, Zichen Zhang, Lianqing Zhu. Design of solid-immersion infrared metalens[J]. Infrared and Laser Engineering, 2022, 51(3): 20210360
    Download Citation