• Photonic Sensors
  • Vol. 12, Issue 3, 220306 (2022)
Yasmin MUSTAPHA KAMIL1, Sura Hmoud AL-REKABI2, Muhammad Hafiz ABU BAKAR3, Yap Wing FEN4、5, Husam Abduldaem MOHAMMED6, Nor Hafizah MOHAMED HALIP3, Mohammed Thamer ALRESHEEDI7, and Mohd Adzir MAHDI3、*
Author Affiliations
  • 1inLAZER Dynamics Sdn Bhd, InnoHub Unit, Putra Science Park, Universiti Putra Malaysia, Serdang 43400, Malaysia
  • 2Electrical Engineering Department, Al Suwayrah Technical Institute, Middle Technical University, Baghdad 10074, Iraq
  • 3Wireless and Photonic Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia
  • 4Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
  • 5Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
  • 6Electronic and Communication Engineering Department, College of Engineering, University of Baghdad, Baghdad 10071, Iraq
  • 7Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Kingdom of Saudi Arabia
  • show less
    DOI: 10.1007/s13320-021-0643-4 Cite this Article
    Yasmin MUSTAPHA KAMIL, Sura Hmoud AL-REKABI, Muhammad Hafiz ABU BAKAR, Yap Wing FEN, Husam Abduldaem MOHAMMED, Nor Hafizah MOHAMED HALIP, Mohammed Thamer ALRESHEEDI, Mohd Adzir MAHDI. Arsenic Detection Using Surface Plasmon Resonance Sensor With Hydrous Ferric Oxide Layer[J]. Photonic Sensors, 2022, 12(3): 220306 Copy Citation Text show less
    References

    [1] E. Shaji, M. Santosh, K. V. Sarath, P. Prakash, V. Deepchand, and B. V. Divya, “Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula,” Geoscience Frontiers, 2021, 12(3): 101079.

    [2] S. Shankar, U. Shanker, and Shikha, “Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation,” The Scientific World Journal, 2014, 2014: 304524.

    [3] L. Zhang, X. R. Chen, S. H. Wen, R. P. Liang, and J. D. Qiu, “Optical sensors for inorganic arsenic detection,” TrAC Trends in Analytical Chemistry, 2019, 118: 869–879.

    [4] F. Fernández-Luqueno, F. López-Valdez, P. Gamero, S. Luna, E. N. Aguilera-González, A. Martinez, et al., “Heavy metal pollution in drinking water-a global risk for human health: A review,” African Journal of Environmental Science and Technology, 2013, 7(7): 567–584.

    [5] S. Thakkar, L. F. Dumée, M. Gupta, B. R. Singh, and W. Yang, “Nano-enabled sensors for detection of arsenic in water,” Water Research, 2021, 188: 116538.

    [6] S. Saha and P. Sarkar, “Differential pulse anodic stripping voltammetry for detection of As(III) by chitosan-Fe(OH)3 modified glassy carbon electrode: a new approach towards speciation of arsenic,” Talanta, 2016, 158: 235–245.

    [7] D. E. Mays and A. Hussam, “Voltammetric methods for determination and speciation of inorganic arsenic in the environment—a review,” Analytica Chimica Acta, 2009, 646(1–2): 6–16.

    [8] E. S. Forzani, K. Foley, P. Westerhoff, and N. Tao, “Detection of arsenic in groundwater using a surface plasmon resonance sensor,” Sensors and Actuators B: Chemical, 2007, 123(1): 82–88.

    [9] Y. C. Reyes, L. E. Coy, L. Yate, S. Jurga, and E. E. González, “Nanostructured and selective filter to improve detection of arsenic on surface plasmon nanosensors,” ACS Sensors, 2016, 1(6): 725–731.

    [10] A. R. Sadrolhosseini, M. Naseri, and H. M. Kamari, “Surface plasmon resonance sensor for detecting of arsenic in aqueous solution using polypyrrolechitosan-cobalt ferrite nanoparticles composite layer,” Optics Communications, 2017, 383: 132–137.

    [11] Y. Yao, S. Miao, S. Yu, L. P. Ma, H. Sun, and S. Wang, “Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent,” Journal of Colloid and Interface Science, 2012, 379(1): 20–26.

    [12] P. R. Solanki, N. Prabhakar, M. K. Pandey, and B. D. Malhotra, “Surface plasmon resonance-based DNA biosensor for arsenic trioxide detection,” International Journal of Environmental Analytical Chemistry, 2009, 89(1): 49–57.

    [13] A. Das, S. Mohanty, and B. K. Kuanr, “Label-free gold nanorod-based plasmonic sensing of arsenic(iii) in contaminated water,” Analyst, 2019, 144(15): 4708–4718.

    [14] T. Li and W. Feng, “Fiber-optic surface plasmon resonance sensor for trace cadmium-ion detection based on Ag-PVA/TiO2 sensing membrane,” IEEE Sensors Journal, 2021, 21(17): 18650–18655.

    [15] S. H. Al-Rekabi, Y. M. Kamil, M. H. A. Bakar, Y. W. Fen, H. N. Lim, S. Kanagesan, et al., “Hydrous ferric oxide-magnetite-reduced graphene oxide nanocomposite for optical detection of arsenic using surface plasmon resonance,” Optics & Laser Technology, 2019, 111: 417–423.

    [16] Y. M. Kamil, S. H. Al-Rekabi, H. A. Mohamed, M. H. A. Bakar, S. Kanagesan, Y. W. Fen, et al., “Di-iron trioxide hydrate-multi-walled carbon nanotube nanocomposite for arsenite detection using surface plasmon resonance technique,” IEEE Photonics Journal, 2019, 11(4): 1–9.

    [17] Y. Guo, C. Di, H. Liu, J. Zheng, L. Zhang, G. Yu, et al., “General route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating,” ACS Nano, 2010, 4(10): 5749–5754.

    [18] Y. V. Stebunov, O. A. Aftenieva, A. V Arsenin, and V. S. Volkov, “Highly sensitive and selective sensor chips with graphene oxide linking layer,” ACS Applied Materials & Interfaces, 2015, 7(39): 21727–21734.

    [19] A. Varma, “CRC Handbook of Atomic Absorption Analysis,” America: CRC Press, 1984.

    [20] A. D. Eaton, H. C. Wang, J. Northington, and A. R. Foundation, “Analytical Chemistry of Arsenic in Drinking Water,” America: AWWA Research Foundation and American Water Works Association, 1998.

    [21] D. Borah, S. Satokawa, S. Kato, and T. Kojima, “Surface-modified carbon black for As(V) removal,” Journal of colloid and interface science, 2008, 319(1): 53–62.

    [22] Y. Yoon, W. K. Park, T. M. Hwang, D. H. Yoon, W. S. Yang, and J. W. Kang, “Comparative evaluation of magnetite-graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal,” Journal of Hazardous Materials, 2016, 304: 196–204.

    [23] S. Dixit and J. G. Hering, “Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility,” Environmental Science & Technology, 2003, 37(18): 4182–4189.

    [24] D. M. Sherman and S. R. Randall, “Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy,” Geochimica et Cosmochimica Acta, 2003, 67(22): 4223–4230.

    Yasmin MUSTAPHA KAMIL, Sura Hmoud AL-REKABI, Muhammad Hafiz ABU BAKAR, Yap Wing FEN, Husam Abduldaem MOHAMMED, Nor Hafizah MOHAMED HALIP, Mohammed Thamer ALRESHEEDI, Mohd Adzir MAHDI. Arsenic Detection Using Surface Plasmon Resonance Sensor With Hydrous Ferric Oxide Layer[J]. Photonic Sensors, 2022, 12(3): 220306
    Download Citation