• Chinese Optics Letters
  • Vol. 19, Issue 12, 121407 (2021)
Yeguang Yan1、2, Gang Liu1、2、3, Haixiao Lin2, Kaifeng Yin1、2, Kun Wang1、2, and Jixi Lu2、3、*
Author Affiliations
  • 1School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • 2Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China
  • 3Research Institute for Frontier Science, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.3788/COL202119.121407 Cite this Article Set citation alerts
    Yeguang Yan, Gang Liu, Haixiao Lin, Kaifeng Yin, Kun Wang, Jixi Lu. VCSEL frequency stabilization for optically pumped magnetometers[J]. Chinese Optics Letters, 2021, 19(12): 121407 Copy Citation Text show less
    References

    [1] J. C. Allred, R. N. Lyman, T. W. Kornack, M. V. Romalis. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett., 89, 13(2002).

    [2] J. Osborne, J. Orton, O. Alem, V. Shah. Fully integrated standalone zero field optically pumped magnetometer for biomagnetism. Proc. SPIE, 10548, 105481G(2018).

    [3] M. J. Brookes, E. Boto, M. Rea, V. Shah, J. Osborne, N. Holmes, R. M. Hill, J. Leggett, N. Rhodes, R. Bowtwll. Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. NeuroImage, 236, 118025(2021).

    [4] S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, J. Kitching. Microfabricated atomic clocks and magnetometers. J. Opt. A, 8, S318(2006).

    [5] P. D. D Schwindt, C. N. Johnson. Atomic magnetometer for human magnetoencephalography(2010).

    [6] M. V. Petrenko, S. P. Dmitriev, A. S. Pazgalev, A. E. Ossadtchi, A. K. Vershovskii. Towards the non-zero field cesium magnetic sensor array for magnetoencephalography. IEEE Sens. J., 21, 18626(2021).

    [7] Y. Yang, M. Xu, A. Liang, Y. Yin, X. Ma, Y. Gao, X. Ning. A new wearable multichannel magnetocardiogram system with a SERF atomic magnetometer array. Sci. Rep., 11, 5564(2021).

    [8] J. Tang, Y. Zhai, L. Cao, Y. Zhang, L. Li, B. Zhao, B. Zhou, B. Han, G. Liu. High-sensitivity operation of a single-beam atomic magnetometer for three-axis magnetic field measurement. Opt. Express, 29, 15641(2021).

    [9] L. Xing, Y. Zhai, W. Fan, J. Huang, T. Song, W. Ye, W. Quan. Miniaturized optical rotation detection system based on liquid crystal variable retarder in a K-Rb-21Ne gyroscope. Opt. Express, 27, 38061(2019).

    [10] X. Wang, K. Liu, H. Cheng, W. Ren, J. Xiang, J. Ji, X. Peng, Z. Zhang, J. Zhao, M. Ye, L. Li, T. Li, B. Wang, Q. Qu, L. Liu, D. Lü. Optimization of temperature characteristics of a transportable 87Rb atomic fountain clock. Chin. Opt. Lett., 17, 080201(2019).

    [11] G. Dong, J. Deng, J. Lin, S. Zhang, H. Lin, Y. Wang. Recent improvements on the pulsed optically pumped rubidium clock at SIOM. Chin. Opt. Lett., 15, 040201(2017).

    [12] H. Lin, J. Deng, J. Lin, S. Zhang, Y. Wang. Frequency stability of a pulsed optically pumped atomic clock with narrow Ramsey linewidth. Appl. Opt., 57, 3056(2018).

    [13] B. Zhou, G. Lei, L. Chen, W. Wu, Z. Wang, X. Meng, J. Fang. Noise suppression for the detection laser of a nuclear magnetic resonance gyroscope based on a liquid crystal variable retarder. Chin. Opt. Lett., 15, 082302(2017).

    [14] Y. Yao, C. Zou, H. Yu, J. Guo, Y. Li, J. Liu. The developing condition analysis of semiconductor laser frequency stabilization technology. J. Semicond., 39, 114004(2018).

    [15] M. Salit, J. Kriz, J. Ridley, R. Compton. VCSELS for rubidium D1 (795 nm). Proceedings of the 43rd Annual Precise Time and Time Interval Systems and Applications Meeting, 377(2011).

    [16] K. Jiang, J. Wang, X. Tu, M. He, M. Zhan. Polarization spectra of Rb atoms and their application in laser frequency stabilization. Chin. Opt. Lett., 20, 377(2003).

    [17] W. Ma, L. Dong, W. Yin, C. Li, S. Jia. Frequency stabilization of diode laser to 1.637 µm based on the methane absorption line. Chin. Opt. Lett., 2, 486(2004).

    [18] Y. Han, S. Guo, J. Wang, H. Liu, J. He, J. Wang. Efficient frequency doubling of a telecom 1560 nm laser in a waveguide and frequency stabilization to Rb D2 line. Chin. Opt. Lett., 12, 121401(2014).

    [19] D. Su, T. Meng, Z. Ji, J. Yuan, Y. Zhao, L. Xiao, S. Jia. Application of sub-Doppler DAVLL to laser frequency stabilization in atomic cesium. Appl. Opt., 53, 7011(2014).

    [20] A. Brillet, P. Cerez, H. Clergeot. Frequency stabilization of He-Ne lasers by saturated absorption. IEEE J. Quantum Electron., 10, 526(1974).

    [21] A. Brillet, P. Cerez. Laser frequency stabilization by saturated absorption. J. Phys. Colloq., 42, C8(1981).

    [22] M. Ouhayoun, C. J. Bordé. Frequency stabilization of CO2 lasers through saturated absorption in SF6. Metrologia, 13, 149(1977).

    [23] J. Wallard. Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour. J. Phys. E, 5, 926(1972).

    [24] V. Shah. Method for stabilizing atomic devices. U.S. Patent(2019).

    [25] C. Affolderbach, G. Mileti. A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation. Rev. Sci. Instrum., 76, 073108(2005).

    [26] C. Affolderbach, C. Andreeva, S. S. Cartaleva, G. Mileti, D. G. Slavov. Frequency stability comparison of diode lasers locked to Doppler and sub-Doppler resonances. Eighth International Conference on Laser and Laser Information Technologies, 396(2004).

    [27] J. Wang, W. Fan, K. Yin, Y. Yan, B. Zhou, X. Song. Combined effect of pump-light intensity and modulation field on the performance of optically pumped magnetometers under zero-field parametric modulation. Phys. Rev. A, 101, 053427(2020).

    [28] R. Ciuryło. Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings. Phys. Rev. A, 58, 1029(1998).

    [29] R. Zhang, Y. Ding, Y. Yang, Z. Zheng, J. Chen, X. Peng, T. Wu, H. Guo. Active magnetic-field stabilization with atomic magnetometer. Sensors, 20, 4241(2020).

    [30] S. P. Krzyzewski, A. R. Perry, V. Gerginov, S. Knappe. Characterization of noise sources in a microfabricated single-beam zero-field optically-pumped magnetometer. J. Appl. Phys., 126, 044504(2019).

    Data from CrossRef

    [1] Kai Jin, Xuxing Geng, Zhi Liang, Wangwang Tang, Jianfeng Xiao, Heng Hu, Guangming Huang, Gaoxiang Li, Guoqing Yang, Shangqing Liang. Design of Portable Self-Oscillating VCSEL-Pumped Cesium Atomic Magnetometer. Electronics, 11, 3666(2022).

    Yeguang Yan, Gang Liu, Haixiao Lin, Kaifeng Yin, Kun Wang, Jixi Lu. VCSEL frequency stabilization for optically pumped magnetometers[J]. Chinese Optics Letters, 2021, 19(12): 121407
    Download Citation