• Laser & Optoelectronics Progress
  • Vol. 58, Issue 7, 0700008 (2021)
Xiangyuan Wang, Bifeng Cui*, Caifang Li, Jianrong Xu, and Haojie Wang
Author Affiliations
  • Key Laboratory of Opto-Electronics Technology of Ministry of Education, Faculty of Information Technology, Beijing University of Technology, Beijing 100124,China
  • show less
    DOI: 10.3788/LOP202158.0700008 Cite this Article Set citation alerts
    Xiangyuan Wang, Bifeng Cui, Caifang Li, Jianrong Xu, Haojie Wang. Research Progress of Transverse Mode Control for Vertical Cavity Surface Emitting Lasers[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0700008 Copy Citation Text show less
    References

    [1] Mangaser R, Rose K. Estimating interconnect performance for a new National Technology Roadmap for Semiconductors[C], 253-255(1998).

    [2] Xie Y Y, Kan Q, Xu C et al. Low threshold current single-fundamental-mode photonic crystal VCSELs[J]. IEEE Photonics Technology Letters, 24, 464-466(2012).

    [3] Jager R, Grabherr M, Jung C et al. 57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs[J]. Electronics Letters, 33, 330-331(1997).

    [4] Alias M S, Leisher P O, Choquette K D et al. Efficiency and spectral characteristics of 850 nm oxide-confined vertical-cavity surface-emitting lasers[C], 231-235(2006).

    [5] Pian S J, Ullah S, Yang Q et al. Single-mode semiconductor nanowire lasers[J]. Chinese Journal of Lasers, 47, 0701003(2020).

    [6] Tang Y, Cao C F, Zhao X Y et al. Laser single-mode characteristics of InGaAs/GaAs/InGaP quantum well lasers[J]. Laser & Optoelectronics Progress, 56, 131402(2019).

    [7] Unold H J, Mahmoud S W Z, Jager R et al. Large-area single-mode VCSELs and the self-aligned surface relief[J]. IEEE Journal of Selected Topics in Quantum Electronics, 7, 386-392(2001).

    [8] Choquette K D, Chow W W, Hadley G R et al. Properties of small-aperture selectively oxidized VCSELs[C], 144-145(1996).

    [9] Bond A E, Dapkus P D, O'Brien J D. Aperture placement effects in oxide-defined vertical-cavity surface-emitting lasers‍[J]. IEEE Photonics Technology Letters, 10, 1362-1364(1998).

    [10] Shchukin V, Ledentsov N N, Kropp J et al. Single-mode vertical cavity surface emitting laser via oxide-aperture-engineering of leakage of high-order transverse modes‍[J]. IEEE Journal of Quantum Electronics, 50, 990-995(2014).

    [11] Unold H J, Golling M, Michalzik R et al. Photonic crystal surface-emitting lasers: tailoring waveguiding for single-mode emission[C], 520-521(2001).

    [12] Danner A J, Yokouchi N, Raftery J J et al. Focused ion beam post-processing for single mode photonic crystal vertical cavity surface-emitting lasers[C], 155-156(2003).

    [13] Choquette K D, Danner A J, Raftery J J et al. Vertical cavity photonic crystal coupled-defect lasers for optical interconnects[C](2004).

    [14] Lee K H, Baek J H, Hwang I K et al. Square-lattice photonic-crystal vertical-cavity surface-emitting lasers[J]. Optics Express, 12, 4136-4143(2004).

    [15] Lü Z R, Zhang Z K, Wang H et al. Research progress on 1.3 μm semiconductor quantum-dot lasers[J]. Chinese Journal of Lasers, 47, 0701016(2020).

    [16] Yang H P D, Hsu I C, Chang Y H et al. Characteristics of InGaAs submonolayer quantum-dot and InAs quantum-dot photonic-crystal vertical-cavity surface-emitting lasers[J]. Journal of Lightwave Technology, 26, 1387-1395(2008).

    [17] Xu X S, Wang C X, Du W et al. Investigation of photonic crystal vertical-cavity surface-emitting lasers at 850 nm[J]. Physics, 36, 17-19(2007).

    [18] Xie Y Y, Xu C, Kan Q et al. High power single mode output low threshold current photonic crystal vertical cavity surface emitting lasers[C], 1-3(2012).

    [19] Martinsson H, Vukusic J A, Larsson A. Single-mode power dependence on surface relief size for mode-stabilized oxide-confined vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 12, 1129-1131(2000).

    [20] Furukawa A, Sasaki S, Hoshi M et al. High-power single-mode VCSELs with triangular holey structure[C], 1024-1025(2004).

    [21] Xu D W, Yoon S F, Ding Y et al. 1.3 μm In(Ga)As quantum-dot VCSELs fabricated by dielectric-free approach with surface-relief process[J]. IEEE Photonics Technology Letters, 23, 91-93(2011).

    [22] Li X S, Ning Y Q, Jia P et al. Rectangular mesa shaped vertical cavity surface emitting laser with shallow surface relief[J]. Chinese Journal of Lasers, 41, 1202005(2014).

    [23] Unold H J, Grabherr M, Eberhard F et al. Increased-area oxidised single-fundamental mode VCSEL with self-aligned shallow etched surface relief[J]. Electronics Letters, 35, 1340(1999).

    [24] Unold J, Golling M, Mederer F et al. Singlemode output power enhancement of InGaAs VCSELs by reduced spatial hole burning via surface etching[J]. Electronics Letters, 37, 570-572(2001).

    [25] Debernardi P, Unold H J, Maehnss J et al. Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory[J]. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1394-1405(2003).

    [26] Deppe D G, Huffaker D L. High spatial coherence vertical-cavity surface-emitting laser using a long monolithic cavity[J]. Electronics Letters, 33, 211-213(1997).

    [27] Unold H J, Mahmoud S W Z, Jager R et al. Improving single-mode VCSEL performance by introducing a long monolithic cavity[J]. IEEE Photonics Technology Letters, 12, 939-941(2000).

    [28] Wiemer M W, Aldaz R I, Miller D A B et al. A single transverse-mode monolithically integrated long vertical-cavity surface-emitting laser[J]. IEEE Photonics Technology Letters, 17, 1366-1368(2005).

    [29] Fischer A J, Choquette K D, Chow W W et al. 2 mW single-mode power from a coupled-resonator vertical-cavity laser[C], 802-803(2000).

    [30] Kardosh I, Demaria F, Rinaldi F et al. High-power single transverse mode vertical-cavity surface-emitting lasers with monolithically integrated curved dielectric mirrors[J]. IEEE Photonics Technology Letters, 20, 2084-2086(2008).

    [31] Wu Y A, Li G S, Nabiev R F et al. Single-mode, passive antiguide vertical cavity surface emitting laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1, 629-637(1995).

    [32] Yoo B S, Chu H Y, Park M S et al. Transverse mode characteristics in amorphous-GaAs-antiguided vertical-cavity surface-emitting lasers[C], 11(1996).

    [33] Zhou D L, Mawst L J. High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 38, 1599-1606(2002).

    [34] Tee C W, Yu S F, Penty R V et al. Transient response of ARROW VCSELs[J]. IEEE Journal of Quantum Electronics, 41, 140-147(2005).

    [35] Więckowska M, Czyszanowski T, Almuneau G et al. Antiresonant oxide island as a measure for improved single-mode emission in VCSELs[C], 1-4(2018).

    [36] Yang J M, Lin Y L, Huang Q Q et al. Wavelength-tunable linearly polarized Yb-doped fiber laser based on tilted fiber grating[J]. Acta Optica Sinica, 40, 0314003(2020).

    [37] Zhou Y, Huang M C Y, Chang-Hasnain C J. Transverse mode control in high-contrast subwavelength grating VCSEL[C], 1-2(2007).

    [38] Kashino J, Inoue S, Matsutani A et al. Transverse mode control of VCSELs using angular dependent high-contrast grating mirror[C], 244-245(2013).

    [39] Zheng Z, Zou Y G, Shi L L et al. High-contrast grating structure design for liquid crystal tunable vertical-cavity surface-emitting lasers[J]. Laser & Optoelectronics Progress, 57, 011402(2020).

    Xiangyuan Wang, Bifeng Cui, Caifang Li, Jianrong Xu, Haojie Wang. Research Progress of Transverse Mode Control for Vertical Cavity Surface Emitting Lasers[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0700008
    Download Citation